#### 전공의 연수교육

## 흉벽질환, 다한증, 흉곽출구증후군

2016. 5. 26 연세대학교 강남세브란스병원 이성수

## **Chest Wall Deformity**

Deformities of the anterior chest wall are widely recognized, poorly understood and generally neglected.

- Charles W. Lester

#### **Pectus Excavatum**

- Funnel chest is an oval depression which involves the sternum as well as the costal cartilages.
- Usually it is already evident in infancy, and it becomes more marked as the child reaches maturity.
- The degree of the deformity varies from a mild depression on the sterno-xiphoid angle, to a severe "cave-in" of most of the anterior chest wall with the lower sternum touching the vertebral column.

- Pectus excavatum is a relatively common anomaly
  - occurs in about one in 300–400 live births
  - three times more frequent in males
  - often associated with connective tissue disorders, such as Marfan's disease or Ehlers-Danlos syndrome
- Symptoms
  - palpitation, exertional dyspnea, fatigue and dull precordial pain, paradoxical breathing, exercise intolerance
- The deformity is also often emotionally disturbing, especially in adolescents, who often avoid active sports and become shy and retiring.

## **Etiology**

- heredity :about 20 to 50% of patients have a family history of pectus deformities - Williams 1872
- an overgrowth of the costal cartilages Flesch 1873
- arrested growth of the sternum Ebstein 1882
- various intrauterine compressive forces such as pressure by the chin, knee or elbow
- latent mediastinitis Raubitsch
- undue traction exerted upon the sternum by the diaphragmaticosternal ligament - Lincoln Brown 1939(1596)

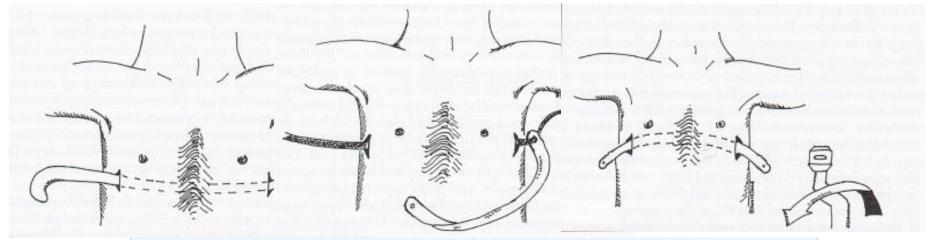
## Repair of PE

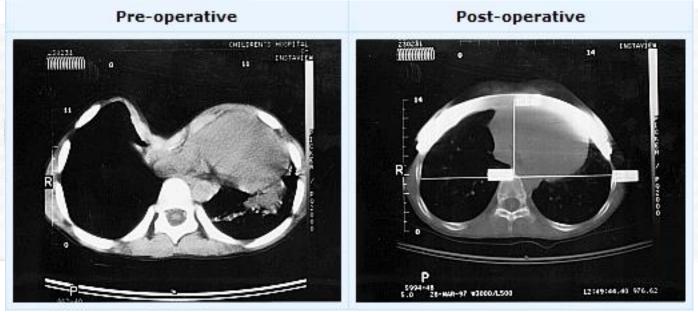
- Initially surgical intervention
  - only for patients with severe sternal depression
  - aimed primarily at relieving cardiac compression
  - cosmesis played a secondary role
- Deformed chest
  - a potential source of embarrassment
  - especially during adolescence and in young adulthood
  - operative correction is now recommended by most practitioners even in the absence of other symptoms
- Earlier operations easy to perform, better results
  - at a later age :chest is less pliable and less accommodating

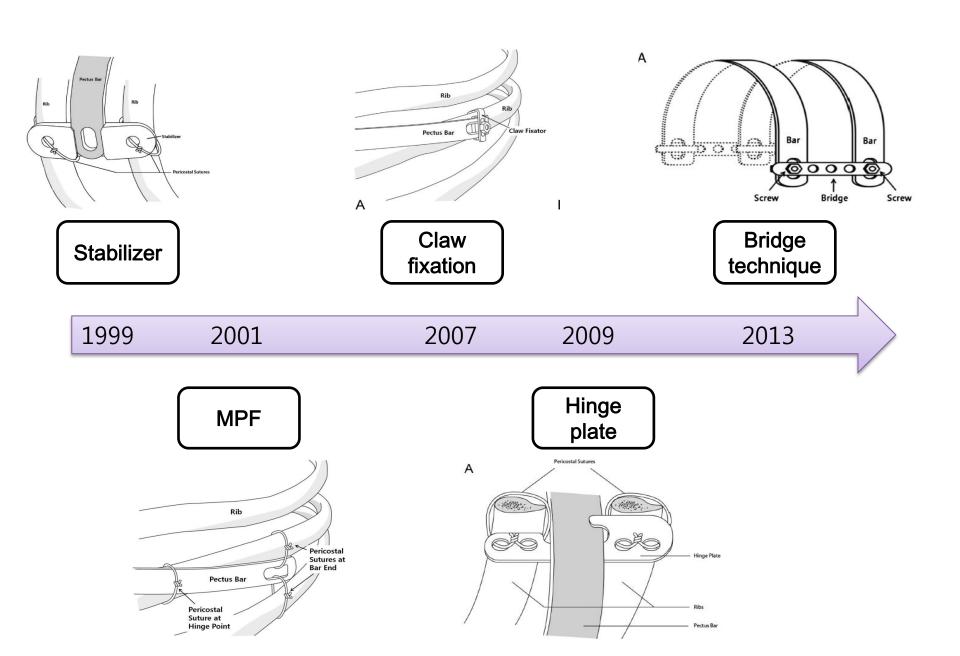
## **Historical period**

- The first surgical intervention of pectus excavatum
  - Wilhelm Meyer in 1911
  - resected right 2nd and 3rd costal cartilages
  - significantly improved dyspnea
- Sauerbruch performed a more radical procedure in 1913
  - 5th to 9th costal cartilage, left hemisternum
- Judet in 1954 performed a sternal turn-over procedure
  - reattaching the resected sternochondral apron in the anterior chest wall

## The modern era


- less than satisfactory late outcomes
- corrected position of the sternum using substernal support
- The principles of modern pectus excavatum surgery
  - Ravitch in 1949.
  - (a) the removal of deformed cartilages,
  - (b) division of the xiphisternal articulation,
  - (c) transverse cuneiform osteotomy of the sternum at the upper level of the deformity
  - (d) maintenance of the corrected position of the sternum


## **New Pectus Excavatum Surgery**


 "minimally invasive repair of pectus excavatum" by Donald Nuss in 1998

 the number of patients operated for pectus excavatum has more than tripled in the last few years

## **Nuss procedure**







## Vaccum Bell

Klobe's suction cup for pectus excavatum:

"If the chest can be pushed out, can it be pulled out"

## Magnetic Mini Mover Procedure (3MP)

- uses two magnets to slowly reconfigure the child's chest, similar in concept to orthodontics.
- By adjusting the external magnet (Magnatrac), the internal magnet (Magnimplant) can slowly reconfigure the chest

## Silastic molds

 Allen and Douglas implanted Silastic molds into the subcutaneous space to fill the depression in pectus excavatum



#### **Pectus Carinatum**

- Pectus carinatum is 16.7% of all chest wall deformities in the Boston children's hospital experience.
- Chondrogladiolar type: most frequent form
  - anterior protrusion of the body of the sternum
  - protrusion of the lower costal cartilages
- Chondromanubrial or "pouter pigeon" deformity
  - : least frequent form
  - protrusion of the upper costal cartilages
  - relative depression of the body of the sternum.

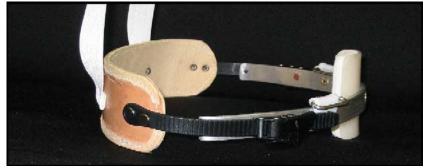
#### **Pectus Carinatum**

- Etiology: not clear
  - an overgrowth of the costal catilages with forward buckling of the cartilages and anterior displacement of the sternum
  - genetic basis: 26% had a family history of chest wall deformity and 12% of scoliosis.
  - more frequent in boys than in girls 3:1
- PC is rarely present at birth
  - deformity was not identified until after the eleventh birthday
  - deformity often progresses during early childhood particularly in the period of rapid growth at puberty.

## Surgical repair

- The current correction of Pectus Carinatum is surgical, often involving resection of costal cartilages and sternal osteotomy and recently there are minimally invasive modifications using thoracoscope.
- The majority of these operations are variations of the procedure first described in 1949 by Ravitch.







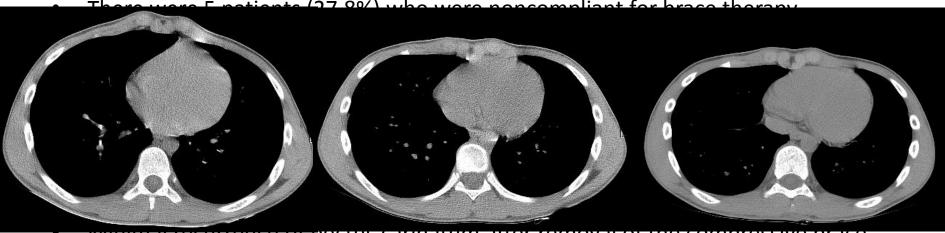



# **Compressive bracing for Pectus carinatum**



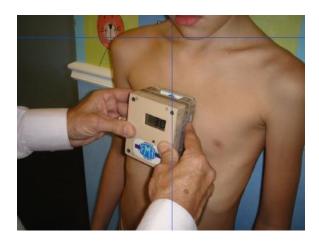


#### **Bracing of Pectus Carinatum: a Preliminary Report**

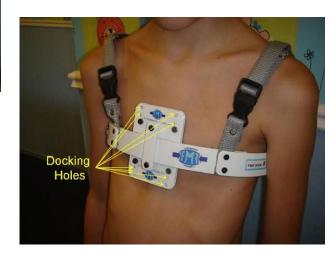








#### Results


• 13 (72.2%) patients have completed treatment (mean bracing time,  $4.9 \pm 1.4$  months).




- occurred in 5 (38.5%) of 13 patients.
- All these patients stopped wearing the compressive brace in 4 months against our advice.

## **New brace**



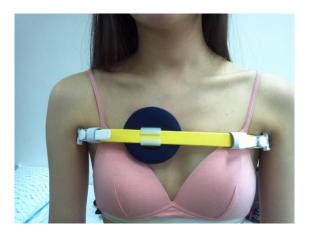




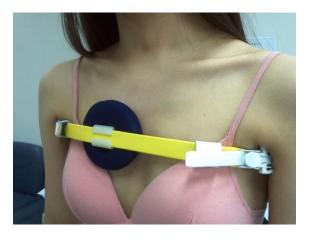
## Overcorrection








## **Atypical lesion**







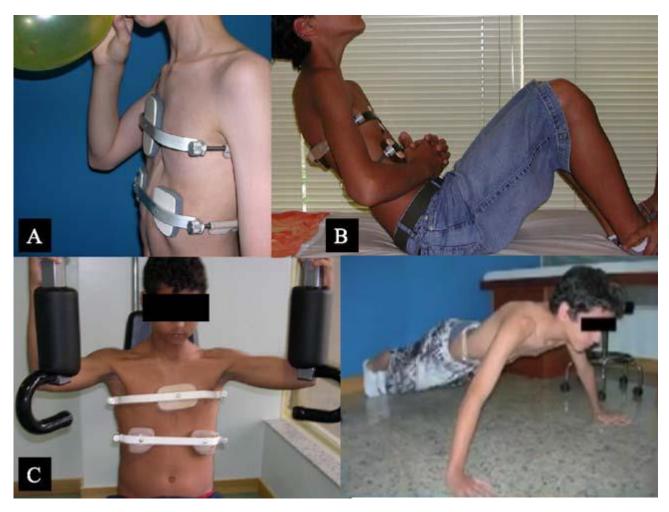







## Flared rib

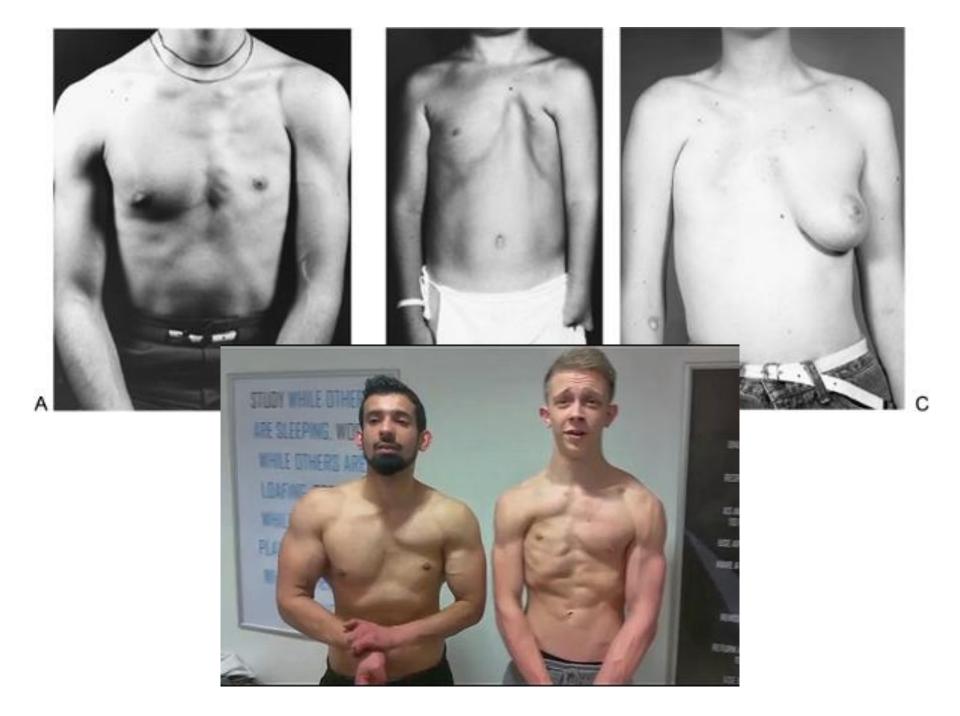












## **Brace with Excercise**



Sydney A Haje, MD – Dynamic Remodeling

## Poland's syndrome

- In 1841, while Poland was a medical student, he described congenital absence of the pectoralis major and minor muscles associated with syndactyly
- Incidence of 1 in 30,000 to 32,000
- Associated with
  - Unilateral palsy of the abducens oculi muscle and facial muscles
  - Abnormalities of the hand
    - Syndactyly
    - Hypoplasia of the thumb
    - Hypoplasia or aplasia of the middle phalanges
    - Rarely, complete absence or hypoplasia of the hand and forearm



# Hyperhidrosis

## **Hyperhidrosis**

 Pathologic condition of excessive sweating in amounts greater than physiologically needed for thermoregulation



## **Pathogenesis**

- **Eccrine sweat glands are responsible for hyperhidrosis** 
  - mixture of the two [apo/eccrine] glands may play a role in axillary hyperhidrosis

Homeostasis: Internal body temperature of approximately 36-38°C

A sympathetic signal is carried to sweat glands by



nally normal.

## Types of hyperhidrosis

#### Focal or primary hyperhidrosis

face, palms, soles, or axillae

#### Generalized sweating(secondary)

- Excessive heat and obesity
- Infections, endocrine disorders, neuroendocrine tumors, malignancy, neurologic disorders, toxins, and previous spinal cord injuries
- Present as adults and have excessive sweating that occurs both while awake and asleep

#### **Treatment**

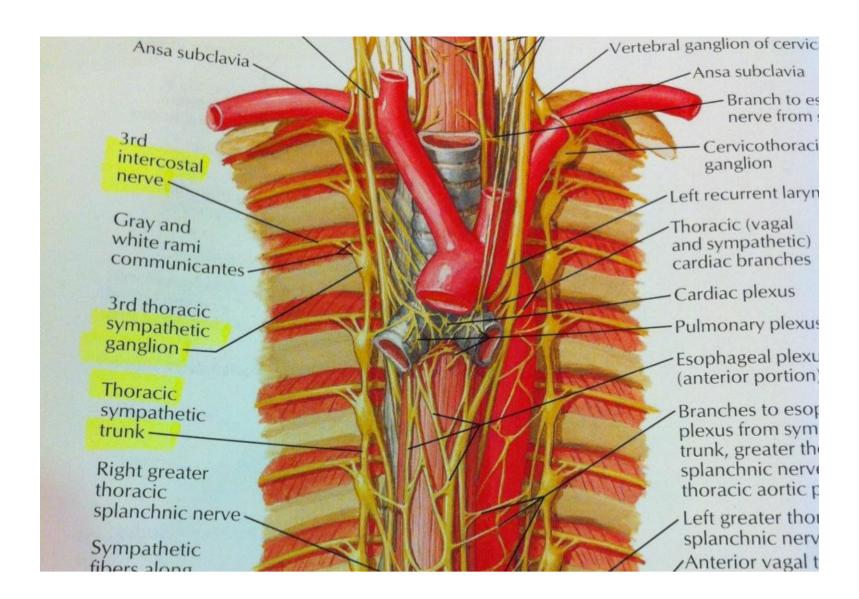
#### Nonsurgical Treatment

Table 2. Comparison of Therapies for Primary Hyperhidrosis

| Treatment                                                                              | Costa           | Side Effects                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topical, 20% to 35% aluminum chloride                                                  | \$288+/year     | Skin irritation, localized burning, stinging, desquamation, poor efficacy, temporary (lasts about 48 hours per application)                                                                                                                                      |
| Iontophoresis (usually 20 mA 3 to 4<br>treatments a week for 30 to 40<br>minutes each) | \$500/device    | Irritation, dryness or peeling of skin, burning or stinging<br>during therapy, temporary (one treatment lasts 1 to 4<br>weeks). Not recommended for women who are<br>pregnant or for persons with pacemakers or substantial<br>implants (eg, joint replacements) |
| Oral therapy (glycopyrrolate, atropine, acetylcholine inhibitors)                      | \$240+/year     | Dry mouth, dry eyes, constipation, mydriasis, difficulty urinating, blurry vision                                                                                                                                                                                |
| Botulinum toxin (Botox A or B)                                                         | \$2,250/session | Pain from injections, muscle weakness, headache,<br>hematoma, swelling, need for repeat procedures                                                                                                                                                               |
| Liposuction/VASER                                                                      | \$3,000/session | Hematoma, superficial skin erosion, alopecia, paresthesia                                                                                                                                                                                                        |
| Endoscopic thoracic sympathotomy                                                       | \$15,000        | Compensatory hyperhidrosis, bradycardia,<br>pneumothorax, postoperative pain, Horner's syndrome                                                                                                                                                                  |

a Approximate cost in US dollars.

## Nomenclature for Sympathetic Surgery


#### Rib- oriented nomenclature

- Too many patients having mediastinal fat that can obscure clear identification of the specific ganglia
- Many anatomical variations in the ganglion anatomy

#### Type of interruption

- Clipped, cut, or cauterized, or a segment removed
- For example
  - Clipped R5, top
  - cauterized, top R4, bottom R4

## Nomenclature for Sympathetic Surgery



### **Patient Selection**

- Surgical consultation should include
  - Secure diagnosis of primary focal hyperhidrosis
  - Anatomic locations involved
  - Amount of hyperhidrosis
  - Full discussion of the options to surgery and potential complications
- The patients should be made aware that the most satisfied patients are those with palmar or palmar-axillary hyperhidrosis, or both.

### Location of Interruption of Sympathetic Chain

#### Palmar hyperhidrosis

- R4 alone interruption(Yang and colleagues, 2007)
  - Limits the degree of CH
  - May lead to moister hands
- R3, R4 interruption
  - Completely dry hands
  - Higher risk of CH

#### Palmar and plantar hyperhidrosis

- R4 interruption
  - Reduce incidence of CH
- R4 and R5 intervention
  - Drier feet

### **Axillary Hyperhidrosis**

- ETS for axillary hyperhidrosis
  - often less successful and has higher "regret rates" than ETS for palmar hyperhidrosis.
- R4 and R5 transection is suggested
  - Palmar-axillary, palmar-axillary-plantar, or pure axillary hyperhidrosis
- A qualitative review shows a trend of lower incidence of CH with fewer interruptions
  - Incidence of CH (Munia and colleagues, 2008)
    - R3/R4 ETS 100% and higher severity
    - R4 ETS alone (42%)
  - Patients who underwent R5 clipping alone experienced no CH, and none regretted having the surgery (Chou and associates)

## **Craniofacial Hyperhidrosis**

- R2 vs R3
  - R3: 9% regretted the procedure, and 27% reported CH
  - R2: 16.7% regretted and more than 40% experienced CH
- R2 vs R2+R3
  - significantly higher CH rate in the group that underwent the R2 and R3 transection (95%), as compared with the R2 group (83%)
- R3-alone interruption is suggested
  - It reduces the risk of CH and the risk of Horner's when compared with R2 or an R2 and R3 transection

### Type of Interruption

- Transection? Resection? Ablatation with a cautery? Division with a harmonic scalpel? or Clipping?
  - No clear differences
    - If the correct level division was achieved
  - Enough separation between the ends of the chain
    - Regrowth is impossible

### **Complications and Treatment**

Primary side effects of hyperhidrosis surgery

- CH, bradycardia, and Horner's syndrome
  - The higher the level of blockade on the chain, the higher is the expected regret rate

### **Compensatory Hyperhidrosis**

- The most common side effect
  - which occurs in the literature from 3% to 98%
- The most common risk factor
  - T2 ganglion interruption(R2, R3)
  - The number of levels interrupted has been inconclusive as a risk factor
- Preoperative testing
  - Injecting bupivicaine
    - reversibly achieve sympathetic nerve blockade observe for CH
- Treatment
  - Ditropan or other anticholinergic medications in escalating doses

## Horner's syndrome

0.7% and 3% after ETS

- Addressed in patients with craniofacial hyperhidrosis
  - Direct injury by cautery, traction, or surrounding inflammation can occur owing to improper localization of the second rib
  - The risk of this complication may be minimized with procedures performed below the second rib (R2)
  - Anatomically, the stellate ganglion can be lower on the left side down to R3

### Permanent bradycardia

- Resting heart rate less than 55 or 50 beats per minute
  - who may require a pacemaker

### Recurrent hyperhidrosis

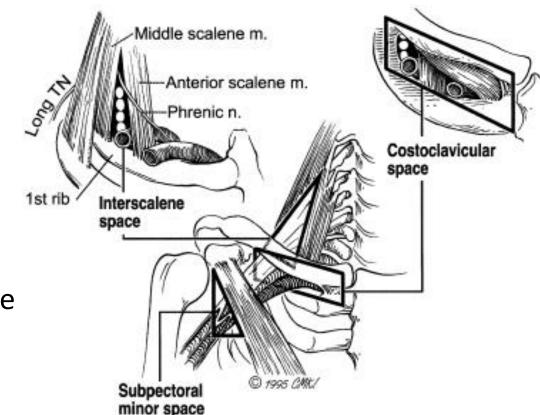
 Incidence rates vary considerably and have been described as 0% to 65%

#### Others

- pneumothorax requiring chest tube drainage (1%)
- pleural effusion (1%)
- acute bleeding or delayed hemothorax (1%)
- Chylothorax
- persistent intercostal neuralgia (1%)

## **Thoracic Outlet Syndrome**

### What is TOS


 TOS is a group of anatomically related, conditions caused by compression of neurovascular structures that serve the upper

extremity.

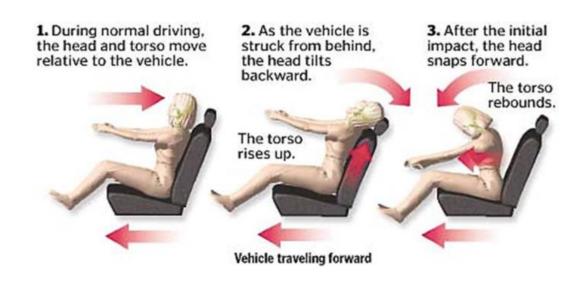
Scalene triangle

Costoclavicular space

Pectoralis minor space



### Classification


| Туре                     | Characteristics                                                                                                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neurogenic TOS  85 - 90% | Caused from brachial plexus compression Symptoms include pain, dysesthesia, numbness, weakness – not localized in specific peripheral nerve distribution                        |
| Venous TOS               | Caused from <b>subclavian vein compression</b> Symptoms include <b>swelling</b> , <b>paresthesias</b> in the fingers                                                            |
| Arterial TOS             | Caused from subclavian artery compression Almost always associated with a cervical rib or anomalous rib Symptoms include hand ischemia with pain, pallor, paresthesia, coldness |

### Cause

- Congenital abnormality
  - Cervical rib
  - Prolonged transverse process
  - Muscular abnormality(ant. scalene m., sickle-shaped scalene m.)
  - Fibrous connective tissue anomalies.

#### Trauma

- Whiplash injury
- Repetitive strain
- Etc.
  - Tumor
  - Hyperostosis
  - Osteomyelitis



# **Evolution of TSO surgery**

Table 1 Evolution of thoracic outlet syndrome surgery

| Name of operation                                                                                                            | Year first<br>performed | Surgeon who<br>introduced it |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|
| Cervical rib resection                                                                                                       | 1861                    | Coote                        |
| First rib resection                                                                                                          | 1908                    | Murphy                       |
| Scalenotomy                                                                                                                  | 1927                    | Adson/Coffey                 |
| First rib resection – posterior approach                                                                                     | 1961                    | Clagett                      |
| First rib resection – supra- and infraclavicular approach                                                                    | 1960s                   | Various surgeons             |
| First rib resection – transaxillary approach                                                                                 | 1966                    | Roos                         |
| Scalenectomy                                                                                                                 | 1938                    | Adson                        |
| Refined scalenectomy                                                                                                         | 1979                    | Sanders                      |
| Combined approach (transaxillary first rib resection followed immediately by transcervical anterior and middle scalenectomy) | 1989                    | Atasoy                       |

(Adson and Coffey 1927; Atasoy 1996, 2004b)

### **TOS Surgery Cases**

- Barnes-Jewish Hospital: 285 cases/2014
- USA: about 2000 cases annually
- More than 100 cases: 5 institutes in USA

• In KOREA

Neglected 333 cases?

- Thoracic Surgery data registry
- 4.2 cases annually for 5 years

### Message

TOS surgery is one of thoracic surgeon's area.

## Thank you for your attention!

