

SNUH Stork을대학교병원

Current issue for surgical treatment of esophageal cancer

Yoohwa Hwang

Department of thoracic and cardiovascular surgery Seoul National University Bundang Hospital Seoul National University College of Medicine

- Cervical lymph nodes
- No. 101 Cervical paraesophageal lymp nodes
- No. 104 Superclavicular lymph nodes
- 2) Thoracic lymph nodes
- No. 105 Upper thoracic paraesophageal lymph nodes
- No. 106 Thoracic paratracheal lymph nodes No. 106rec Recurrent nerve lymph nodes
 - No. 106pre Pretracheal lymph nodes
 - No. 106tb Trancheobronchial lymph nodes
- No. 107 Subcarinal lymph nodes
- No. 108 Middle thoracic paraesophageal lymph nodes
- No. 109 Main bronchus lymph nodes
- No. 110 Lower thoracic paraesophageal lymph nodes
- No. 111 Superadiaphragmatic lymph nodes
- No. 112 Posterior mediastinal lymph nodes
- 3) Abdominal lymph nodes
- No. 1 Right cardiac lymph nodes
- No. 2 Left cardiac lymph nodes
- No. 3 Lymph nodes along the lesser curvature
- No. 7 Lymph nodes along the left gastric artery
- No. 8 Lymph nodes along the common hepatic artery
- No. 9 Lymph nodes along the celiac artery

New TNM Staging System for Esophageal Cancer: What Chest Radiologists Need to Know. Su Jin Hong, MD; Tae Jung Kim, MD, PhD; Kyung Bum Nam, MD; In Sun Lee, MD; Hee ChulYang, MD; Sukki Cho, MD; Kwhanmien Kim, MD; Sanghoon Jheon, MD; Kyung Won Lee, MD, PhD. RadioGraphics 2014; 34:1722–1740; Published online 10.1148/rg; 346130079

Principles of Surgical Treatment for Carcinoma of the Esophagus

Analysis of Lymph Node Involvement

HIROSHI AKIYAMA, M.D., MASAHIKO TSURUMARU, M.D., TAKESHI KAWAMURA, M.D., YOSHIMASA ONO, M.D.

Extensive lymph node dissections in the posterior mediastinum and abdomen were performed during resections of esophageal carcinomas. Analysis of lymph nodes demonstrated a widespread distribution of positive lymph nodes regardless of the location of the tumor. The distribution of positive lymph nodes was noticed in the area between the superior mediastinum and the celiac region. The studies were also made on the distribution of positive lymph nodes in the superior gastric region, particularly in the region of the lesser curvature of the stomach. The following principles should be followed when carcinoma of the esophagus is surgically treated. 1) Lymph node dissection of the whole length of the posterior mediastinum, superior gastric region, and celiac region must be performed. 2) Total thoracic and abdominal esophagectomy with From the Department of Surgery, Toranomon Hospital, Tokyo, Japan

of patients who had been treated for esophageal carcinoma, and the extent to which surgical resection can be safely accomplished must be assured.

This paper describes the principles of surgery for resectable carcinoma of the esophagus, and its relation to tumor spread and successful esophageal replacement.

Lymph nodes that may be involved in metastases

Rate of positive lymph nodes per number of cases resected

Radical Lymph Node Dissection for Cancer of the Thoracic Esophagus

Hiroshi Akiyama, M.D., F.A.C.S.(Hon.), F.R.C.S.(Eng., Hon.), Masahiko Tsurumaru, M.D., F.A.C.S., Harushi Udagawa, M.D., F.A.C.S., and Yoshiaki Kajiyama, M.D.

From the Department of Surgery, Toranomon Hospital, Tokyo, Japan

Figure 1. Extent of esophageal and gastric resection and systematic radical lymph node dissection. Extent of extensive three-field dissection is shown. In two-field dissection, no cervical dissection is carned out.

Frequency of lymph node metastases according to the depth of tumor invasion

Death of turner investor	Frequency of lymph node metastases							
Depth of tumor invasion	no. of pati positive	ents with no. of patients with nodes 3 - field dissection						
Epithelium (ep)	0/5*	0%						
Lamina propria mucosae (Ipm)	0/2*	0%						
Muscularis mucosae (mm)	2/7*	28. 6%						
Submucosa (sm)	33/61	54. 1%						
Muscularis propria (pm)	23/33	69. 7%						
Adventitia (a)	149/183	81. 4%						
Total	207/291	71. 4%						
		0 50 100%						

Frequency of positive lymph nodes according to the location of the primary tumor

- Involvement of distal regional nodes, regardless of location of tumor, was unpredictable.
- ✓ The clearance of nodes in all three fields is logical wherever the primary cancer is located in the mediastinum.

Figure 5. Frequency of lymph node metastases to the cervicothoracic region and specifically, recurrent nerve lymphatic chains (three-field dissection).

 The importance of nodal dissection of cervical and superior mediastinal regions, specifically with regard to the recurrent nerve lymphatic chains for the upper thoracic esophageal cancers and cancers of lower levels of thoracic esophagus

Figue 8. Metastases to the cervical nodes and survival after three-field dissection.

Figure 9. Metastases to the celiac trunk nodes and survival after threefield dissection.

Figure 7. Comparison of survival in patients with positive nodes between two- and three-field dissections.

 The survival of patients after extensive 3-field dissection was significantly better than those after less extensive 2field dissection.

Extent of lymphadenectomy

- Transhiatal esophagectomy
- One-field lymphadenectomy
- Two-field lymphadenectomy
 - Standard two field lymphadenectomy
 - Extended two field lymphadenectomy
 - Total two field lymphadenectomy
- Three field lymphadenectomy

Extent of lymphadenectomy

Impact of RLN lymph node

Anatomically, the lymph nodes near the recurrent laryngeal nerve are located at the junction of the neck and chest where the cervical and mediastinal lymph nodes frequently intersected.

- RLN lymph nodes are the most frequent site of lymph node metastasis.
- The rate of LN metastasis near the bilateral recurrent laryngeal nerve was 34.2%, in which 15.8% involving the left LNs and 20.8% involving the right LNs.
- Rate of skip metastasis to the LNs near the recurrent laryngeal nerve was 4.2%

Ye K et al. Genet Mol Res 2014;13:6411-9

Recurrent laryngeal nerve palsy

RLNP	Total $(n = 29)$	9) TH	Ξ ($n = 93$)	TTE and VATS-E $(n = 206)$
Absent	121 (40.5 %)	53 ((57.0 %)	68 (33.0 %)
Present	178 (59.5 %)	40 ((43.0 %)	138 (67.0 %)
Right	74	4		70
Left	163	38		125
		RLNP by laryngoscopy 178 patients		Sato et al. World J Surg 2016;40:129–136
Bila 118 nerv	ateral RLNP ves in 59 patients	Right RLNP 15 nerves in 15 patients	Left RLN 104 nerves in 10-	IP 4 patients
Recover Right Left Non-rec	y 44 nerves: t 26 nerves 18 nerves overy 22 nerves:	Recovery 6 nerves Non-recovery 1 nerves Censored 8 nerves	Recovery 41 nerv Non-recovery 27 Censored 36 nerv	ves inerves ves
Right Left Censore	t 7 nerves 15 nerves d 52 nerves	6	1.7 % recover	ed at 1 year after op.

WECC data (N=4,627)

T1 more than 10

T2 more than 20

T3 more than 30

Risk NP et al. Ann Surg 2010;251:46-50

I. Lymphadenectomy : Recommendation

Japanese Classification of Esophageal Cancer, 11th ed

Fig. 1-9 Lymph node groups of tumors located in Ut

Fig. 1-10 Lymph node groups for tumors located in Mt

I. Lymphadenectomy : Recommendation

Japanese Classification of Esophageal Cancer, 11th ed

Fig. 1-12 Lymph node groups for tumors located in Ae (EG)

Ann Surg Oncol (2012) 19:68–74 DOI 10.1245/s10434-011-2049-9 Annals of SURGICALONCOLOGY OFFICIAL JOURNAL OF THE SOCIETY OF SURGICAL ONCOLOGY

ORIGINAL ARTICLE – THORACIC ONCOLOGY

A Randomized Trial Comparing Postoperative Adjuvant Chemotherapy with Cisplatin and 5-Fluorouracil Versus Preoperative Chemotherapy for Localized Advanced Squamous Cell Carcinoma of the Thoracic Esophagus (JCOG9907)

Nobutoshi Ando, MD, FACS¹, Hoichi Kato, MD², Hiroyasu Igaki, MD², Masayuki Shinoda, MD³, Soji Ozawa, MD, FACS⁴, Hideaki Shimizu, MD⁵, Tsutomu Nakamura, MD⁶, Hiroshi Yabusaki, MD⁷, Norio Aoyama, MD⁸, Akira Kurita, MD⁹, Kenichiro Ikeda, MD¹⁰, Tatsuo Kanda, MD¹¹, Toshimasa Tsujinaka, MD¹², Kenichi Nakamura, MD¹³, and Haruhiko Fukuda, MD¹³

¹Department of Surgery, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan; ²Esophageal Surgery Division, National Cancer Center Hospital Tokyo, Tokyo, Japan; ³Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan; ⁴Department of Surgery, Keio University School of Medicine, Tokyo, Japan; ⁵Department of Surgery, Tochigi Cancer Center, Utsunomiya, Japan; ⁶Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan; ⁷Department of Surgery, Niigata Cancer Center Hospital, Niigata, Japan; ⁸Department of Surgery, Kanagawa Cancer Center, Yokohama, Japan; ⁹Department of Surgery, Shikoku Cancer Center, Matsuyama, Japan; ¹⁰Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan; ¹¹Department of Surgery, Niigata University Medical and Dental Hospital, Niigata, Japan; ¹²Department of Surgery, National Hospital Organization, Osaka National Hospital, Osaka, Japan; ¹³Japan Clinical Oncology Group Data Center, Tokyo, Japan

FIG. 3 Overall survival. *Pre* preoperative chemotherapy (group 2), *Post* postoperative chemotherapy (group 1)

 Preoperative chemotherapy with cisplatin plus 5-fluorouracil followed by surgery improved overall survival without additional serious adverse events.

1. Downstaging was

achieved in some patient by preoperative chemotherapy.

 Complete resection(R0) was slightly more frequent in preoperative chemotherapy group.

^{*}R0 sub-classification by Japanese Society for Esophageal Diseases¹⁵: Degree A, D > pN; Degree B, other R0.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer

P. van Hagen, M.C.C.M. Hulshof, J.J.B. van Lanschot, E.W. Steyerberg, M.I. van Berge Henegouwen, B.P.L. Wijnhoven, D.J. Richel,
G.A.P. Nieuwenhuijzen, G.A.P. Hospers, J.J. Bonenkamp, M.A. Cuesta,
R.J.B. Blaisse, O.R.C. Busch, F.J.W. ten Kate, G.-J. Creemers, C.J.A. Punt,
J.T.M. Plukker, H.M.W. Verheul, E.J. Spillenaar Bilgen, H. van Dekken,
M.J.C. van der Sangen, T. Rozema, K. Biermann, J.C. Beukema,
A.H.M. Piet, C.M. van Rij, J.G. Reinders, H.W. Tilanus,
and A. van der Gaast, for the CROSS Group*

CROSS Trial NEJM 2012

 Preoperative chemoradiotherapy improved survival among patients with potentially curable esophageal or esophagogastric-junction cancer.

III. Minimally Invasive Esophagectomy

Surgical Video Clip: VATS Ivor Lewis operation

III. Minimally Invasive Esophagectomy

Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial

Surya S A Y Biere, Mark I van Berge Henegouwen, Kirsten W Maas, Luigi Bonavina, Camiel Rosman, Josep Roig Garcia, Suzanne S Gisbertz, Jean H G Klinkenbijl, Markus W Hollmann, Elly S M de Lange, H Jaap Bonjer, Donald L van der Peet, Miguel A Cuesta

Summary

Background Surgical resection is regarded as the only curative option for resectable oesophageal cancer, but pulmonary complications occurring in more than half of patients after open oesophagectomy are a great concern. We assessed whether minimally invasive oesophagectomy reduces morbidity compared with open oesophagectomy.

Methods We did a multicentre, open-label, randomised controlled trial at five study centres in three countries between June 1, 2009, and March 31, 2011. Patients aged 18–75 years with resectable cancer of the oesophagus or gastro-oesophageal junction were randomly assigned via a computer-generated randomisation sequence to receive either open transthoracic or minimally invasive transthoracic oesophagectomy. Randomisation was stratified by centre. Patients, and investigators undertaking interventions, assessing outcomes, and analysing data, were not masked to group assignment. The primary outcome was pulmonary infection within the first 2 weeks after surgery and during the whole stay in hospital. Analysis was by intention to treat. This trial is registered with the Netherlands Trial Register, NTR TC 2452.

Findings We randomly assigned 56 patients to the open oesophagectomy group and 59 to the minimally invasive oesophagectomy group. 16 (29%) patients in the open oesophagectomy group had pulmonary infection in the first 2 weeks compared with five (9%) in the minimally invasive group (relative risk [RR] 0.30, 95% CI 0.12–0.76; p=0.005). 19 (34%) patients in the open oesophagectomy group had pulmonary infection in-hospital compared with seven (12%) in the minimally invasive group (0.35, 0.16–0.78; p=0.005). For in-hospital mortality, one patient in the open oesophagectomy group died from anastomotic leakage and two in the minimally invasive group from aspiration and mediastinitis after anastomotic leakage.

TIME Trial Lancet 2012

RANDOMIZED CONTROLLED TRIAL

Minimally Invasive Versus Open Esophageal Resection

Three-year Follow-up of the Previously Reported Randomized Controlled Trial: the TIME Trial

Jennifer Straatman, MD, PhD,* Nicole van der Wielen, MD,* Miguel A. Cuesta, MD, PhD,* Freek Daams, MD, PhD,* Josep Roig Garcia, MD, PhD,† Luigi Bonavina, MD, PhD,‡ Camiel Rosman, MD, PhD,§ Mark I. van Berge Henegouwen, MD, PhD,¶ Suzanne S. Gisbertz, MD, PhD,¶ and Donald L. van der Peet, MD, PhD*

Objective: The aim of this study was to investigate 3-year survival following a randomized controlled trial comparing minimally invasive with open esophagectomy in patients with esophageal cancer. E sophageal cancer is rapidly becoming a global problem with an increasing incidence worldwide. Despite the advanced techniques in diagnostics and treatment, there is still a poor survival with 5-year survival rates varying between 15% and 25% ^{1,2}. The only curative

TIME Trial Ann Surg 2017

	00 (N=56)	MIO (N=59)	p value
Primary outcomes			
Pulmonary infection within 2 weeks	16 (29%)	5 (9%)	0.005
Pulmonary infection in-hospital	19 (34%)	7 (12%)	0.005
Secondary outcomes			
Hospital stay (days)*	14 (1–120)	11 (7-80)	0.044
Short-term quality of life†			
SF 36†			
Physical component summary	36 (6; 34–39)	42 (8; 39–46)	0.007
Mental component summary	45 (11; 40–50)	46 (10; 41-50)	0.806
EORTC C30†			
Global health	51 (21; 44–58)	61 (18; 56–67)	0.020
OES 18‡			
Talking	37 (39; 25-49)	18 (26; 10–26)	0.008
Pain	19 (21; 13–26)	8 (11; 5-11)	0.002
Total lymph nodes retrieved*	21 (7-47)	20 (3-44)	0.852
Resection margin§			0.080
RO	47 (84%)	54 (92%)	
R1	5 (9%)	1 (2%)	
pStage¶			0.943
0	0 (0%)	1 (2%)	
1	4 (7%)	4 (7%)	
lla	16 (29%)	17 (29%)	
llb	6 (11%)	9 (15%)	
III	14 (25%)	11 (19%)	
IV	5 (9%)	4 (7%)	
No residual tumour or lymph-node metastasis	7 (13%)	9 (15%)	
Mortality			0.590
30-day mortality	0 (0%)	1 (2%)	
In-hospital mortality	1 (2%)	2 (3%)	

Intraoperative data Operative time (min)*† 299 (66–570) 329 (90–559) 0.002 Blood loss (mL)† 475 (50–3000) 200 (20–1200) <0.002 Conversions‡ NA 8 (14%) Level of anastomosis§ 0.970 Cervical 37 (66%) 38 (64%) Thoracic 15 (27%) 17 (29%) Postoperative data ICU stay (days)† 1 (0–106) 1 (0–50) 0.700 VAS (10 days)¶ 3 (2) 2 (2) 0.001 Endural failurell 11 (20%) 10 (17%) 0.724
Operative time (min)*† 299 (66–570) 329 (90–559) 0.002 Blood loss (mL)† 475 (50–3000) 200 (20–1200) <0.001
Blood loss (mL)† 475 (50-3000) 200 (20-1200) <0.001
Conversions‡ NA 8 (14%) Level of anastomosis§ 0.970 Cervical 37 (66%) 38 (64%) Thoracic 15 (27%) 17 (29%) Postoperative data ICU stay (days)† 1 (0–106) 1 (0–50) 0.706 VAS (10 days)¶ 3 (2) 2 (2) 0.001 Epidural failurell 11 (20%) 10 (17%) 0.724
Level of anastomosis§ 0.970 Cervical 37 (66%) 38 (64%) Thoracic 15 (27%) 17 (29%) Postoperative data 10-106) 1 (0-50) 0.706 ICU stay (days)† 1 (0-106) 1 (0-50) 0.706 VAS (10 days)¶ 3 (2) 2 (2) 0.001 Epidural failurell 11 (20%) 10 (17%) 0.724
Cervical 37 (66%) 38 (64%) Thoracic 15 (27%) 17 (29%) Postoperative data ICU stay (days)† 1 (0–106) 1 (0–50) 0.706 VAS (10 days)¶ 3 (2) 2 (2) 0.001 Epidural failurell 11 (20%) 10 (17%) 0.724
Thoracic 15 (27%) 17 (29%) Postoperative data ICU stay (days)† 1 (0–106) 1 (0–50) 0.706 VAS (10 days)¶ 3 (2) 2 (2) 0.001 Epidural failurell 11 (20%) 10 (17%) 0.724
Postoperative data ICU stay (days)† 1 (0–106) 1 (0–50) 0.706 VAS (10 days)¶ 3 (2) 2 (2) 0.001 Epidural failurell 11 (20%) 10 (17%) 0.724
ICU stay (days)† 1 (0−106) 1 (0−50) 0.706 VAS (10 days)¶ 3 (2) 2 (2) 0.001 Epidural failurell 11 (20%) 10 (17%) 0.724
VAS (10 days)¶ 3 (2) 2 (2) 0.001 Enidural failurell 11 (20%) 10 (17%) 0.724
Epidural failurell 11 (20%) 10 (17%) 0.73/
Other complications
Anastomotic leakage 4 (7%) 7 (12%) 0.390
Thoracic complications 2 (4%) 2 (3%) 0.958 without anastomotic leakage**
Vocal-cord paralysis†† 8 (14%) 1 (2%) 0.012
Pulmonary embolism 0 (0%) 1 (2%) 0.328
Reoperations 6 (11%) 8 (14%) 0.641

TIME Trial Lancet 2012

FIGURE 2. Kaplan-Meier curves for comparison of overall survival between open and minimally invasive esophagectomy (FR, full responders with no residual tumor).

F/U Duration(median) : 22month [IQR 10-59] 3yr OS MIE vs OE = 42.9% VS 41.2% (p=0.633) **FIGURE 3.** Kaplan-Meier curves for comparison of disease free survival between open and minimally invasive esophagectomy (FR, full responders with no residual tumor).

F/U Duration(median) : 22month [IQR 10-59] 3yr OS MIE vs OE = 42.9% VS 37.3% (p=0.602) ✓ The study presented here depicted no differences in disease-free and overall 3-yr survival for open and MIE.

TIME Trial Ann Surg 2017

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Hybrid Minimally Invasive Esophagectomy for Esophageal Cancer

 C. Mariette,* S.R. Markar, T.S. Dabakuyo-Yonli, B. Meunier, D. Pezet, D. Collet, X.B. D'Journo, C. Brigand, T. Perniceni, N. Carrère, J.-Y. Mabrut, S. Msika, F. Peschaud, M. Prudhomme, F. Bonnetain,* and G. Piessen, for the Fédération de Recherche en Chirurgie (FRENCH) and French Eso-Gastric Tumors (FREGAT) Working Group⁺

ABSTRACT

BACKGROUND

Postoperative complications, especially pulmonary complications, affect more than half the patients who undergo open esophagectomy for esophageal cancer. Whether hybrid minimally invasive esophagectomy results in lower morbidity than open esophagectomy is unclear.

NEJM 2019;380:152-62

Hybrid minimally invasive esophagectomy

: laparoscopic stomach mobilization + open thoracotomy

Inclusion period: 2009-2012

Participating centers: 13 centers from France

Surgical quality assurance was implemented by the credentialing of surgeons, standardization of technique, and monitoring of performance.

Table 2. Primary and Secondary End Points (Intention-to-Treat Population).*									
End Points	Total Trial Population (N=207)	Hybrid Minimally Invasive Esophagectomy (N=103)	Open Esophagectomy (N = 104)						
Primary end point									
Major complication at 30 days — no. (%)	104 (50)	37 (36)	67 (64)						
Secondary end points									
Postoperative death — no. (%)									
At 30 days	3 (1)	1 (1)	2 (2)						
At 90 days	10 (5)	4 (4)	6 (6)						
Major pulmonary complication at 30 days — no./total no. (%)†	49/205 (24)	18/102 (18)	31/103 (30)						

- Hybrid MIE resulted in a lower incidence of major complications during or after esophagectomy for cancer than did open surgery.
- Hybrid procedure resulted in overall survival and disease-free survival that were similar to those observed with open esophagectomy.

RANDOMIZED CONTROLLED TRIAL

Robot-assisted Minimally Invasive Thoracolaparoscopic Esophagectomy Versus Open Transthoracic Esophagectomy for Resectable Esophageal Cancer

A Randomized Controlled Trial

Pieter C. van der Sluis, MD, PhD, MSc,* Sylvia. van der Horst, MSc,* Anne M. May, PhD,† Carlo Schippers, MSc,* Lodewijk A. A. Brosens, MD, PhD,‡ Hans C. A. Joore, MD,§ Christiaan C. Kroese, MD,¶ Nadia Haj Mohammad, MD, PhD,|| Stella Mook, MD, PhD,** Frank P. Vleggaar, MD, PhD,†† Inne H. M. Borel Rinkes, MD, PhD,* Jelle P. Ruurda, MD, PhD,* and Richard van Hillegersberg, MD, PhD*

Conclusions: RAMIE resulted in a lower percentage of overall surgeryrelated and cardiopulmonary complications with lower postoperative pain, better short-term quality of life, and a better short-term postoperative functional recovery compared to OTE. Oncological outcomes were comparable and in concordance with the highest standards nowadays.

Ann Surg 2019;269:621-630

Background: The standard curative treatment for patients with esophageal cancer is perioperative chemotherapy or preoperative chemoradiotherapy followed by open transthoracic esophagectomy (OTE). Robot-assisted minimally invasive thoracolaparoscopic esophagectomy (RAMIE) may reduce complications.

TABLE 2. Postoperative Statistics ($n = 109$)			
	RAMIE $(n = 54)$	OTE (n = 55)	Р
Primary endpoint [n (%)]			
Related complications (MCDC 2, 3, 4, and 5)*	32 (59)	44 (80)	0.02
No related complications (MCDC 0,1)	22 (41)	11 (20)	
Secondary endpoints [n (%)]			
Pulmonary complications	17 (32)	32 (58)	0.005
Pneumonia	15 (28)	30 (55)	0.005
Pneumothorax	0 (0)	3 (6)	0.24 [¶]
Pulmonary embolism	3 (6)	1 (2)	0.36
ARDS	0 (0)	1 (0)	1.00 [¶]
Cardiac complications	12 (22)	26 (47)	0.006
Atrial fibrillation	12 (22)	25 (46)	0.01
Cardiac asthma	1 (2)	1 (2)	1.00 [¶]
Wound infections	2 (4)	8 (14)	0.09 [¶]
Cervical	2 (4)	1 (2)	0.61 [¶]
Thoracic	0 (0)	5 (9)	0.06
Abdominal	0 (0)	2 (4)	0.50 [¶]
Anastomotic leakage [†]			0.57
Type I (conservative)	0 (0)	0 (0)	
Type II (nonsurgical intervention)	1 (2)	0 (0)	
Type III (surgical intervention)	12 (22)	11 (20)	

TABLE 2. Postoperative Statistics (n = 109)			
	RAMIE $(n = 54)$	OTE (n = 55)	Р
Primary endpoint [n (%)]			
Related complications (MCDC 2, 3, 4, and 5)*	32 (59)	44 (80)	0.02
No related complications (MCDC 0,1)	22 (41)	11 (20)	
Secondary endpoints [n (%)]			
Pulmonary complications	17 (32)	32 (58)	0.005
Pneumonia	15 (28)	30 (55)	0.005
Pneumothorax	0(0)	3 (6)	0.24
Pulmonary embolism	3 (6)	1 (2)	0.36
ARDS	0 (0)	1 (0)	1.00
Cardiac complications	12 (22)	26 (47)	0.006
Atrial fibrillation	12 (22)	25 (46)	0.01
Cardiac asthma	1 (2)	1 (2)	1.00
Wound infections	2 (4)	8 (14)	0.09
Cervical	2 (4)	1 (2)	0.61
Thoracic	0 (0)	5 (9)	0.06
Abdominal	0 (0)	2 (4)	0.50
Anastomotic leakage [†]			0.57
Type I (conservative)	0 (0)	0 (0)	
Type II (nonsurgical intervention)	1 (2)	0 (0)	
Type III (surgical intervention)	12 (22)	11 (20)	

Pain scores (VAS, day 1-14)

	VAS Day 1	VAS Day 2	VAS Day 3	VAS Day 4	VAS Day 5	VAS Day 6	VAS Day 7	VAS Day 8	VAS Day 9	VAS Day 10	VAS Day 11	VAS Day 12	VAS Day 13	VAS Day 14	Overall
RAMIE (n=54)	2.45	2.58	2.58	2.97	2.38	2.29	2.18	1.73	1.48	1.48	1.13	0.95	0.89	0.93	1.86
OTE (n=55)	3.22	3.39	3.41	3.09	2.91	3.13	2.71	2.51	2.58	2.31	1.97	1.88	1.85	1.72	2.62
SE [#]	0.40	0.40	0.40	0.40	0.40	0.40	0.39	0.39	0.39	0.39	0.39	0.40	0.40	0.40	0.13
P-value	0.05	0.04	0.04	0.76	0.18	0.03	0.15	0.05	0.01	0.03	0.03	0.02	0.02	0.05	<0.001

* During the first 14 days, overall postoperative pain (VAS) was significantly lower for RAMIE compared to OTE using a mixed effects linear model adjusted for baseline pain scores.

SE denotes standard error of the mean

FIGURE 3. Kaplan-Meier Plots of overall and disease free survival.

Thank you for your attention

Pylorus drainage procedure

A - Truncal vagotomy B - Selective vagotomy C - Highly selective vagotomy Vagotomy

Cut vagus nerve

Eliminate acid secretion stimulus

Pylorus drainage procedure

: widens the pylorus to gaurantee stomach

emptying even w/o vagus nerve stimulation

Pylorus drainage procedure

Pyloroplasty

Pyloromyotomy

Pylorus drainage procedure

Pyloric Finger Fracture

Botox Injection

Pylorus drainage procedure: systemic review

The impact of pyloric drainage on clinical outcome following esophagectomy: a systematic review

S. Arya,1 S. R. Markar,1 A. Karthikesalingam,2 G. B. Hanna1

¹Division of Surgery, Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, and ²Department of Outcomes Research, St George's Hospital, London, UK

SUMMARY. Delayed emptying of the gastric conduit following esophagectomy can be associated with an increased incidence of complications including aspiration pneumonia and anastomotic leak. The aim of this systematic review is to evaluate the current modalities of pyloric drainage following esophagectomy and their impact on anastomotic integrity and postoperative morbidity. Medline, Web of Science, Cochrane library, trial registries, and conference proceedings were searched. Five pyloric management strategies following esophagectomy were evaluated: no intervention, botulinum toxin (botox) injection, finger fracture, pyloroplasty, and pyloromyotomy. Outcomes evaluated were hospital mortality, anastomotic leak, pulmonary complications, delayed gastric emptying, and the late complication of bile reflux. Twenty-five publications comprising 3172 patients were analyzed. Pooled analysis of six comparative studies published after 2000 revealed pyloric drainage to be associated with a nonsignificant trend toward a reduced incidence of anastomotic leak, pulmonary complications, and delayed gastric emptying. Overall, the current level of evidence regarding the merits of individual pyloric drainage strategies remains very poor. There is significant heterogeneity in the definitions of clinical outcomes, in particular delayed gastric emptying, which has prevented meaningful assessment and formulation of consensus regarding the management of the pylorus during esophagectomy. Pyloric drainage procedures showed a non-significant trend toward fewer anastomotic leaks, pulmonary complications, and reduced gastric stasis when employed following esophagectomy. However, the ideal technique remains unproven suggesting that further collaborative investigations are needed to determine the intervention that will maximize the potential benefits, if any, of pyloric intervention.

KEY WORDS: botulinum toxin, esophageal cancer, finger fracture, pyloromyotomy, pyloroplasty, pylorus.

Odds ratio meta-analysis plot (random effects)

No significant difference in pulmonary complications, anastomotic leaks, reduced gastric stasis between pyloric drainage and nonintervention

Ann Surg 2019;269:621-630

Whole stomach vs Gastric tube

RESEARCH ARTICLE

Gastric-tube versus whole-stomach esophagectomy for esophageal cancer: A systematic review and meta-analysis

	Gastric	Tube	Whole sto	mach		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Y	/ear	M-H, Rand	lom, 95% Cl	
Collard 1995	6	112	4	100	19.7%	1.36 [0.37, 4.96] 1	995		•	
Peng 2009	6	120	31	120	26.6%	0.15 [0.06, 0.38] 2	2009			
Shu 2013	23	453	44	397	34.7%	0.43 [0.25, 0.72] 2	013			
Zhang 2015	3	52	11	52	19.0%	0.23 [0.06, 0.87] 2	015			
Total (95% CI)		737		669	100.0%	0.36 [0.16, 0.81]		-		
Total events	38		90							
Heterogeneity: Tau ² =	0.41; Chi2	= 8.38,	df = 3 (P = 0).04); l ² =	= 64%		0.01	0.1	1 10	100
Test for overall effect:	Z = 2.49 (F	P = 0.01)				0.01	Favours gastric tube	Favours whole stomach	100

Fig 4. Forest plot of reflux esophagitis in the whole-stomach and gastric-tube groups.

Wenxiong Zhang, Dongliang Yu, Jinhua Peng, Jianjun Xu, Yiping Wei*

Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China

* weiyiping2015@163.com

	Gastric	Tube	Whole stomach		Odds Ratio Odds Ratio			o Odd		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed. 95% CI Yea	ar	M-H. Fix	ed. 95% Cl	
Shu 2013	15	453	39	397	92.1%	0.31 [0.17, 0.58] 201	3			
Zhang 2015	0	52	3	52	7.9%	0.13 [0.01, 2.67] 201	5	· · · ·	+-	
Total (95% CI)		505		449	100.0%	0.30 [0.17, 0.55]		•		
Total events	15		42						~	
Heterogeneity: Chi ² :	= 0.30, df = 1	1 (P = 0.	.59); l² = 0%				0.001	0,1	1 10	1000
Test for overall effec	t: Z = 3.95 (F	> < 0.00	01)					Favours gastric tube	Favours whole st	omach

Fig 7. Forest plot of thoracic stomach syndrome in the whole-stomach and gastric-tube groups.

Esophago-gastostomy

Transthoracic EEA

Transoral OrVil EEA

Esophago-gastostomy

Triangulating stapling technique

Hand-sewn

e stitches were placed between the outer laver of the

mucosa laver was onened transversely. e The rear muc

Esophago-gastostomy

Side To Side anastomosis

