

Surgical Management of Arrhythmia

울산대학교의과대학 서울아산병원 흉부외과

Atrial Fibrillation

Atrial Fibrillation

- Most common arrhythmia requiring treatment: prevalence ≈ 2%
- Age > 70 yrs: prevalence ≈ 10%
- Clinical issues Palpitation symptoms – CHF
 - Thromboembolism (stroke)
- Response to anti-arrhythmic agents: 30-60%
- Long-term efficacy: <30%</p>
- Most patients need lifelong anticoagulation therapy

Stroke prevention

REFLECTIONS OF THE PIONEERS

The first Maze procedure

James L. Cox, MD

J Thorac Cardiovasc Surg 2011;141:1093-7

Development of Maze Procedure

- 1st animal (canine) model for AF in 1980 (Duke University)
 Stepwise chordae rupture → MR induction
 Wait > 3 months → AF induction
- "Transmural scar in the atrium block the conduction"

Development of Maze Procedure

- 1st digital mapping in mid-1980s (Washing University)
 - "Multiple macro-reentrant circuits in the atria"
 It remains in one location for only 0.2 sec

 → map-guided surgery is impractical...

 Diameter of macro-reentrant circuit:

 5-6cm in LA, much larger in RA

Observations from Animals

"undulating" baseline

(Rhythm strip) QRS QRS ORS

Atrial Fibrillation

Development of Maze Procedure

Cox et al. J Thorac Cardiovasc Surg 2011

Development of Maze Procedure

Cox et al. J Thorac Cardiovasc Surg 2011

Initial Cox-Maze Procedure

FIGURE 2. Three-dimensional representation of the original Maze I procedure. A "window" has been drawn in the posterior left atrium to allow visualization of the location of the mitral valve, atrial septum, and AV node.

Cox et al. JAMA 1991

UNIVERSITY OF ULSAN COLLEGE OF MEDICINE

Initial Cox-Maze Procedure

FIGURE 3. Photograph taken by Research Fellow Byung-Chul Chang, now the Professor and Chief of Cardiothoracic Surgery at Yonsei University in Seoul, Korea, in early 1987 of the author performing the first experimental Maze procedure in the Cardiothoracic Surgery Research Laboratories at Washington University in St Louis.

Successful Surgical Treatment of Atrial Fibrillation

Review and Clinical Update

James L. Cox, MD; John P. Boineau, MD; Richard B. Schuessler, PhD; T. Bruce Ferguson, Jr, MD; Michael E. Cain, MD; Bruce D. Lindsay, MD; Peter B. Corr, PhD; Kathy M. Kater, MSN; Demetrios G. Lappas, MD

Atrial fibrillation is the most common of all sustained cardiac arrhythmias, yet it has no effective medical or surgical therapy. During the past decade, multipoint computerized electrophysiological mapping systems were used to map both experimental and human atrial fibrillation. On the basis of these studies, a new surgical procedure was developed for atrial fibrillation. Between September 25, 1987, and July 1, 1991, this procedure was applied in 22 patients with paroxysmal atrial flutter (n = 2), paroxysmal atrial fibrillation (n = 11), or chronic atrial fibrillation (n = 9) of 2 to 21 years' duration. All patients were refractory to all antiarrhythmic medications, and each patient failed to receive the desired therapeutic benefits of an average of five drugs administered preoperatively. There were no operative deaths and all perioperative morbidity resolved. All 22 patients have been successfully treated for atrial fibrillation with surgery alone. Three patients developed one late isolated episode of atrial flutter at 5, 6, and 15 months postoperatively, and each of these patient's symptoms is now controlled by a single antiarrhythmic drug. Preservation of atrial transport function has been documented in all patients postoperatively, and all have experienced marked clinical improvement.

(JAMA. 1991;266:1976-1980)

symptomatic. However, the threat of thromboembolism is more ominous.¹⁰

Pharmacologic treatment of atrial fibrillation is directed initially at converting the rhythm to normal sinus. When the abnormal rhythm cannot be controlled, pharmacologic therapy is directed at decreasing the ventricular response rate by limiting the number of atrial impulses that can traverse the atrioventricular node (AVN). Control of the heart rate in the presence of continued atrial fibrillation, however, does not alleviate the untoward subjective symptoms associated with an irregular heartbeat, does not restore cardiac hemodynamics to normal, and does not decrease the risk of thromboembolism. Thus, it is apparent that a more effective form of therapy for atrial fibrillation is needed.

Succesinitial Maze Procedure

Summary of the Preoperative Status and Postoperative Results of the Maze Procedure for Atrial Flutter and Atrial Fibrillation*

			Duration of Preoperative Rhythm, y					-		Post-			Time
Pa Aç Ge	itient/ ge, y/ ander	Sick Sinus Syndrome	Paroxysmal A-Flutter	Paroxysmal A-Fib	Chronic A-Fib	Preoperative Drugs That Failed	In-Hospital Perioperative Arrhythmia	Rhythm at Hospital Discharge	Follow-up Rhythm	operative Permanent Pacemaker	Post- operative Drugs	Atrial Transport Function	Since Surgery, mo
1/	/59/M	No	3	No	No	V,Q,D,P,Pr, Am	A-Flutter	NSR	NSR	None	None	Preserved	46
2	/40/M	No	No	2	No	D,P,Pr,F,Am	A-Fib	NSR	NSR	None	None	Preserved	42
3/	/52/M	No	No	3	No	D,E,Am	None	NSR	NSR	DDD-R	None	Preserved	32
4/	/62/F	Yes	No	No	10	Q,D,P	None	Sin brady	Sin brady	DDD-R	None	Preserved	23
5/	/31/M	No	No	No	3	D,E,Am	None	NSR	NSR	None	None	Preserved	21
6/	/51/M	Yes	No	3	No	V,Q,D,Pr,F	None	Sin brady	Sin brady	DDD-R	None	Preserved	20
7/	/38/F	No	No	9	No	V,Q,D,Pr,F,E, Di,Ac,Am	None	NSR	NSR	None	D	Preserved	18
8/	/51/M	Yes	No	No	4	v	None	Junctional	Sin brady	DDD-R	None	Preserved	13
9/	/40/F	No	No	2	No	A,V,D,M,F,E,	A-Flutter	NSR	NSR	None	None	Preserved	13
10/	/31/M	No	5	No	No	D,Di,Q,V,A, Pr,F,E,Am	None	Junctional	NSR	None	None	Preserved	13
11/	/46/M	No	No	4	1	D	None	NSR	NSR	None	None	Preserved	11
12/	/56/M	No	No	No	1.5	D,E,P,V,Am	None	NSR	NSR	None	E	Preserved	11
13/	/40/M	No	No	2	No	Pr,F,E,Di,A, Am	A-Flutter	Junctional	Accelerated junctional	None	None	Preserved	11
14/	/66/F	No	No	7	No	Di,Pf,Ac,D,V, Am	None	Junctional	NSR	DDD-R	None	Preserved	10
15/	/68/M	No	No	13	No	Q,Di,M,D,V	None	NSR	NSR	None	None	Preserved	8
16/	/57/M	No	No	11	No	V, Pr, F, Pf, Am	A-Flutter	Junctional	NSR	DDD-R†	None	Preserved	8
17/	/53/M	No	No	10	No	D,Di,Q,P,Pr,V	None	NSR	NSR	None	None	Preserved	8
18/	/30/F	No	No	8	No	D,Q,Di,Pf,F,E	None	NSR	NSR	None	None	Preserved	8
19/	/53/M	No	No	No	16	D,Q,So,V,A, Nf	A-Fib	NSR	NSR	None	Di	Preserved	7
20/	48/M	No	No	19	2	D,Q,Pr,F	A-Fib	NSR	NSR	DDD-R†	None	Preserved	7
21/	51/M	Yes	No	8	7	D,V,Q,Pf,Am	A-Fib	Sin brady	Sin brady	DDD-R	None	Preserved	6
22/	69/F	Yes	No	10	2	D,P,V,Q,F	None	Sin brady	Sin brady	DDD-R	None	Preserved	4

Incal amprovement.

Cox et al. JAMA 1991

Succes Initial Maze Procedure Atrial Fibrillation

There were no operative deaths Perioperative atrial arrhythmias in 8 (36%)

Surgical bleeding in 3 (14%)
Stroke in 1 (5%)
Pneumonia in 1 (5%)
PPM in 9 (41%)

symptomatic. However, the threat of thromboembolism is more ominous.³⁶

Pharmacologic treatment of atrial fibrillation is directed initially at converting the rhythm to normal sinus. When the abnormal rhythm cannot be controlled, pharmacologic therapy is directed at decreasing the ventricular response rate by limiting the number of atrial impulses that can traverse the atrioventricular node (AVN). Control of the heart rate in the presence of continued atrial fibrillation, however, does not alleviate the untoward subjective symptoms associated with an irregular heartbeat, does not restore cardiac hemodynamics to normal, and does not decrease the risk of thromboembolism.

Cox et al. JAMA 1991

UNIVERSITY OF ULSAN COLLEGE OF MEDICINE

Modifications of Maze Procedure

Cox-Maze I in 1987

Gold Standard

Current Understandings on Pathophysiologic Mechanisms of Atrial Fibrillation

Multiple Wavelet Hypothesis

Multiple reentry wavelets in the atrium
Theoretical rationale of the Maze operation

Focal Trigger

- Pacemaker activity
- Especially in pulmonary veins \rightarrow "PV isolation"

UNIVERSITY OF ULSAN COLLEGE OF MEDICINE

Autonomic Nervous System

Ganglionic plexi

Multifactorial Mechanism

Paroxysmal AF

Coarse AF wave Preserved atrial size

Preserved atrial thickness

Persistent AF

Fine AF wave Enlarged atrial size Atrial wall thinning

Trigger

Substrate

Cut-and Sew Maze

Alternative Energy Sources

Replace the surgical incision

Lines of transmural ablation -> conduction block

Alternative Energy Sources

- 1. Cryoablation
- 2. Radiofrequency
- 3. Microwave

4. High-intensity focused ultrasound (HIFU)

Cryoablation

- - N₂O-based Frigitronics[®] cryoprobe: 2min, -60°C Argon-based technology: rapidly achieve -160°C

Cryoablation SurgiFrost CryoSurgical System

Radiofrequency Lesions

- More incisive than cryotherapy
- Current of 350 kHz to 1MHz
 - Adjacent tissue injuries
- Saline irrigation
- Unipolar probe, bipolar clamp

Radiofrequency Lesions

RF unipolar probe

Low efficacy

Fig 1. Ablation devices used in this study. (A) Argon-based cryothermy clamp (FrostByte Clamp on SurgiFrost, CryoCath Technologies Inc, Montreal, Quebec, Canada). (B) Radiofrequency clamp (Isolator Synergy, Atricure Inc, Cincinnati, OH).

RF bipolar clamp

Cox-Maze IV

Figure 1. Cox-maze IV procedure lesion set. *Lt. Appendage*, Left atrial appendage; *SVC*, superior vena cava; *Rt. Appendage*, right atrial appendage; *IVC*, inferior vena cava; *Rt. Coronary Artery*, right coronary artery.

Damiano et al. J Thorac Cardiovasc Surg 2007

Cox-Maze IV

в

Right Atrial Lesion Set

Approach

cryoablation connecting superior and inferior lesions

Right Atrial Lesion

Right Atrial Lesion

Left Atrial Ablation Versus Biatrial Ablation in the Surgical Treatment of Atrial Fibrillation

Joon Bum Kim, MD, Ji Hyun Bang, MD, Sung Ho Jung, MD, Suk Jung Choo, MD, Cheol Hyun Chung, MD, and Jae Won Lee, MD

Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea

© 2011 by The Society of Thoracic Surgeons

Right Atrial Lesion

MICS Multi-Valve Surgery

Right Side Lesion

Which One Better?

Figure 1. Cox-maze IV procedure lesion set. *Lt. Appendage*, Left atrial appendage; *SVC*, superior vena cava; *Rt. Appendage*, right atrial appendage; *IVC*, inferior vena cava; *Rt. Coronary Artery*, right coronary artery.

Maze procedure

Left Atrial Ablation Versus Biatrial Ablation in the Surgical Treatment of Atrial Fibrillation

Joon Bum Kim, MD, Ji Hyun Bang, MD, Sung Ho Jung, MD, Suk Jung Choo, MD, Cheol Hyun Chung, MD, and Jae Won Lee, MD

Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea

© 2011 by The Society of Thoracic Surgeons

Surgical AF ablation

STS Database

Fig 1. Prevalence of surgical atrial fibrillation (AF) correction procedures among patients with preoperative atrial fibrillation undergoing cardiac surgery. p < 0.0001, test for trend.

Gammie et al. Ann Thorac Surg 2008

Kim et al

Adult: Arrhythmias

Check for updates

Concomitant ablation of atrial fibrillation in rheumatic mitral valve surgery

Wan Kee Kim, MD, Ho Jin Kim, MD, Joon Bum Kim, MD, PhD, Sung-Ho Jung, MD, PhD, Suk Jung Choo, MD, PhD, Cheol Hyun Chung, MD, PhD, and Jae Won Lee, MD, PhD

ABSTRACT

Objective: Efficacy of atrial fibrillation ablation in rheumatic mitral valve disease has been regarded inferior to that in nonrheumatic diseases. This study aimed to evaluate net clinical benefits by the addition of concomitant atrial fibrillation ablation in rheumatic mitral valve surgery.

Methods: Among 1229 consecutive patients with atrial fibrillation from 1997 to 2016 (54.4 ± 11.7 years; 68.2% were female), 812 (66.1%) received concomitant ablation of atrial fibrillation (ablation group), and 417 (33.9%) underwent valve surgery alone (no ablation group). Death and thromboembolic events were compared between these groups. Mortality was regarded as a competing risk to evaluate thromboembolic outcomes. To reduce selection bias, inverse probability of treatment weighting methods were performed.

Results: Freedom from atrial fibrillation occurrence at 5 years was $76.5\% \pm 1.8\%$ and $5.3\% \pm 1.1\%$ in the ablation and no ablation groups, respectively (P < .001). The ablation group had significantly lower risks for death (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.52-0.93) and thromboembolic events (HR, 0.49; 95% CI, 0.32-0.76) than the no ablation group. Time-varying Cox analysis revealed that the occurrence of stroke after surgery was significantly associated with death (HR, 3.97; 95% CI, 2.36-6.69). In subgroup analyses, the reduction in the composite risk of death and thromboembolic events was observed in all mechanical (n = 829; HR, 0.53; 95% CI, 0.39-0.73), bioprosthetic replacement (n = 239; HR, 0.67; 95% CI, 0.41-1.08), and repair (n = 161; HR, 0.17; 95% CI, 0.06-0.52) subgroups (P for interaction = .47).

Conclusions: Surgical atrial fibrillation ablation during rheumatic mitral valve surgery was associated with a lower risk of long-term mortality and thromboembolic events. Therefore, atrial fibrillation ablation for rheumatic mitral valve disease may be a reasonable option. (J Thorac Cardiovasc Surg 2019;157:1519-28)

Survival benefit by the addition of surgical AF ablation for rheumatic heart disease. Central Image was illustrated by Jinsoo Rhu.

Central Message

The addition of surgical AF ablation for patients undergoing rheumatic MV surgery may be a reasonable option.

Perspective

Although the efficacy of AF ablation in rheumatic MV disease has been reported to be inferior to that in nonrheumatic diseases in terms of the elimination of AF, whether there are net clinical benefits of concomitant AF ablation in rheumatic MV surgery has been debated.

See Commentaries on pages 1529 and pages 1531.

interaction = .47).

Conclusions: Surgical atrial fibrillation ablation during rheumatic mitral valve surgery was associated with a lower risk of long-term mortality and thromboembolic events. Therefore, atrial fibrillation ablation for rheumatic mitral valve disease may be a reasonable option. (J Thorac Cardiovasc Surg 2019;157:1519-28)

Circulation

American Heart Association.

Learn and Live sm

JOURNAL OF THE AMERICAN HEART ASSOCIATION

Long-Term Outcomes of Mechanical Valve Replacement in Patients With Atrial Fibrillation Impact of the Maze Procedure

Joon Bum Kim, MD; Joon Suk Moon; Sung-Cheol Yun, PhD; Wan Kee Kim, MD; Sung-Ho Jung, MD; Suk Jung Choo, MD, PhD; Hyun Song, MD, PhD; Cheol Hyun Chung, MD, PhD; Jae Won Lee, MD, PhD

Background—The long-term benefits of the maze procedure in patients with chronic atrial fibrillation undergoing mechanical valve replacement who already require lifelong anticoagulation remain unclear.

Methods and Results—We evaluated adverse outcomes (death; thromboembolic events; composite of death, heart failure, or valve-related complications) in 569 patients with atrial fibrillation–associated valvular heart disease who underwent mechanical valve replacement with (n=317) or without (n=252) a concomitant maze procedure between 1999 and 2010. After adjustment for differences in baseline risk profiles, patients who had undergone the maze procedure were at similar risks of death (hazard ratio, 1.15; 95% confidence interval, 0.65–2.03; P=0.63) and the composite outcomes (hazard ratio, 0.82; 95% confidence interval, 0.50–1.34; P=0.42) but a significantly lower risk of thromboembolic events (hazard ratio, 0.29; 95% confidence interval, 0.12–0.73; P=0.008) compared with those who underwent valve replacement alone at a median follow-up of 63.6 months (range, 0.2–149.9 months). The effect of superior event-free survival by the concomitant maze procedure was notable in a low-risk EuroSCORE (0–3) subgroup (P=0.049), but it was insignificant in a high-risk EuroSCORE (\geq 4) subgroup (P=0.65). Furthermore, the combination of the maze procedure resulted in superior left ventricular (P<0.001) and tricuspid valvular functions (P<0.001) compared with valve replacement alone on echocardiographic assessments performed at a median of 52.7 months (range, 6.0–146.8 months) after surgery.

Conclusion—Compared with valve replacement alone, the addition of the maze procedure was associated with a reduction in thromboembolic complications and improvements in hemodynamic performance in patients undergoing mechanical valve replacement, particularly in those with low risk of surgery. (*Circulation.* 2012;125:2071-2080.)

ASAN Medical Center Adjusted Hazard Ratios for Clinical EGE OF MED **Outcomes: Maze vs. Control**

UNIVERSITY OF ULSAN

Outcomes	JOURNAL OF THE	AMERICAN HEART ASSOCIATION	HR	95% CI	P value
Death	ng-Term O	Crude	0.91	0.53-1.56	0.73
		Propensity score	ed.1.13	0.63-2.01	0.69
_	Joon Bum Kim Sung-Ho	IPTW	1.15	0.65-2.03	0.63
Thromboem	oolism	Crude	0.42	0.17-1.03	0.059
mech	anical valve replacem	Propensity score	0.28	0.10-0.77	0.014
or va mech	lve-related complicati anical valve replacen	IPTW	0.29	0.12-0.73	0.008
Composite o	utcome	Crude	0.83	0.59-1.16	0.27
event repla	s (hazard ratio, 0.29; cement alone at a med val by the concomitan	Propensity score	0.80	0.55-1.16	0.24
was i proce	insignificant in a high dure resulted in super	IPTW	0.82	0.50-1.34	0.42
valve mont Conclus in the valve	replacement alone of hs) after surgery. ion—Compared with omboembolic complia replacement, particul	a echocardiographic assessments performed a valve replacement alone, the addition of the m cations and improvements in hemodynamic pe- arly in those with low risk of surgery. (Circ	Kim JB	et al. Circulati	ion 2012

valve replacement alone on echocardiographic assessments performed at a median of 52.7 months (range, 6.0–146.8 months) after surgery.

Conclusion—Compared with valve replacement alone, the addition of the maze procedure was associated with a reduction in thromboembolic complications and improvements in hemodynamic performance in patients undergoing mechanical valve replacement, particularly in those with low risk of surgery. (Circulatize, 2012;125:2071-2090.)

Kim JB et al. Circulation 2012

Kim JB et al. Circulation 2012

Summary

- Pathophysiology of AF:
 - Multifactorial
 - Trigger from PV-major focus
- Essential part of surgical AF ablation
 - PV isolation
- Alternative energy sources
 - Cryoablation
 - Radiofrequency ablation
- Proven benefits of AF ablation?
 - Positive based on observational studies

