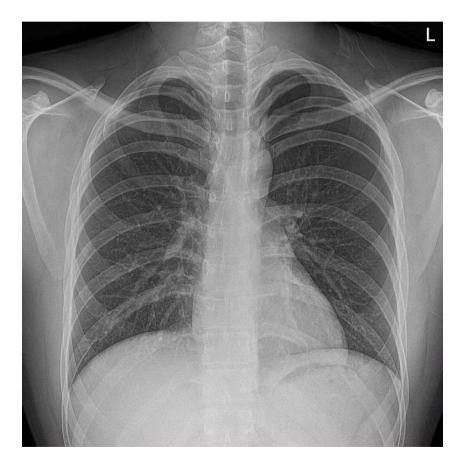
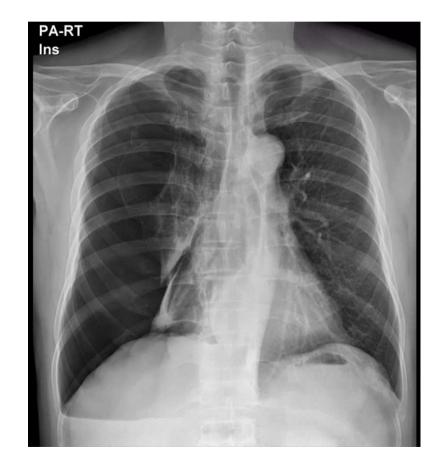
Diagnosis and Management of Pleural Disease

장효준

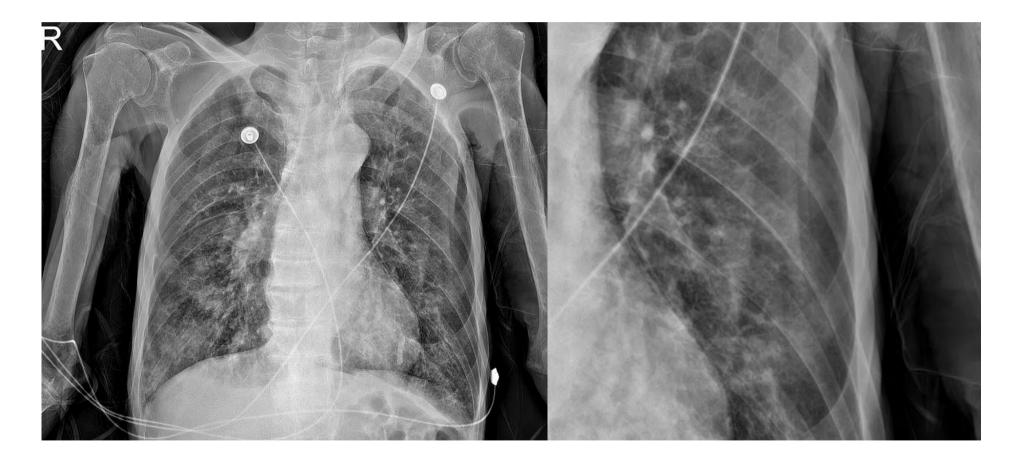
한양대학교 서울 병원 흉부외과

Contents

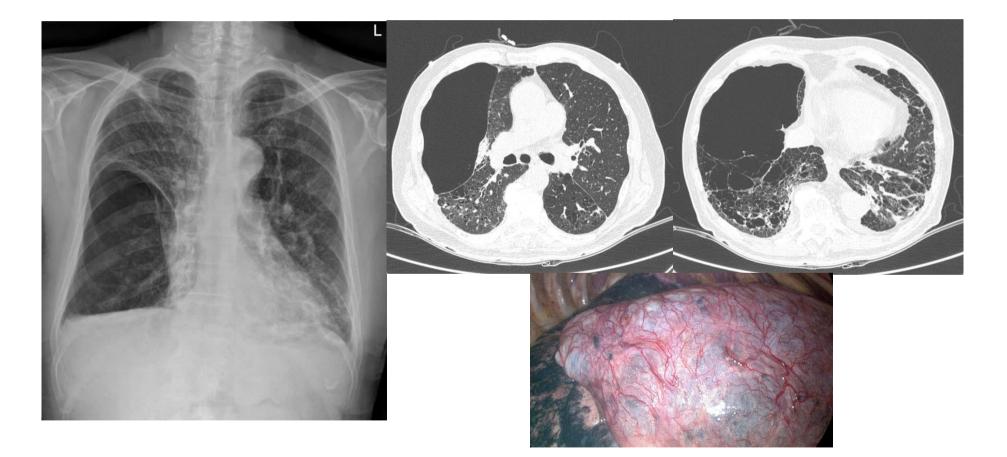

- 1. Spontaneous pneumothorax
- 2. Parapneumonic effusion and empyema
- 3. Malignant mesothelioma


Spontaneous Pneumothorax

Introduction

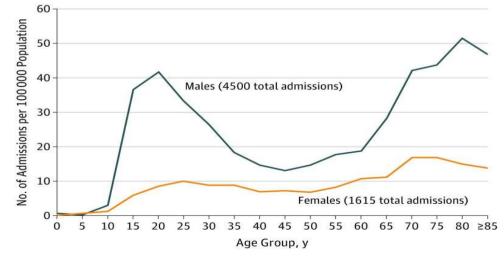

- Presence of air in the pleura cavity
- Common medical disease : asymptomatic ~ life threating

Pneumothorax



Skin fold

Large bullae

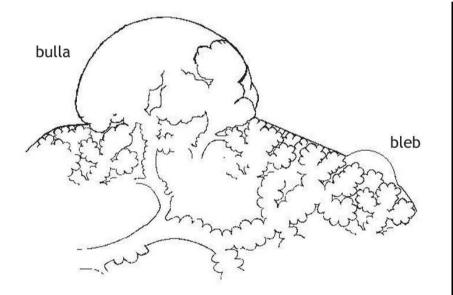

Classification

- Spontaneous pneumothorax
 - Primary spontaneous pneumothorax(PSP)
 - : without underlying lung disease
 - Secondary spontaneous pneumothorax(SSP)
 - : with underlying lung disease
 - Catamenial pneumothorax
 - : in conjunction with menstruation
 - Neonatal pneumothorax
 - : prematurity

- Traumatic pneumothorax
 - Blunt or penetrating chest injury
 - latrogenic

Epidemiology

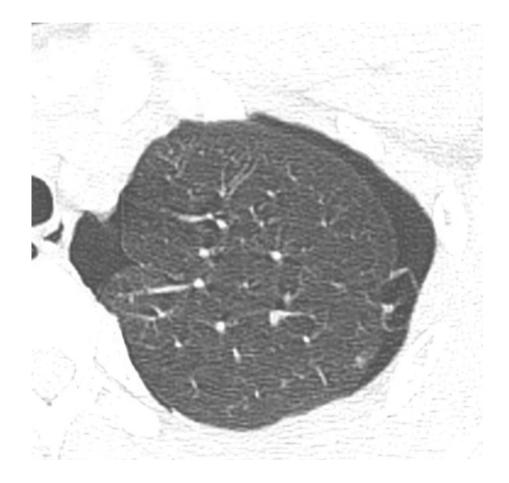
- Incidence : 14-22/100,000 population per year
 - Male: 22.2-24/100,000 population per year
 - Female: 6.7-9.8/100,00 population per year
- Bimodal distribution

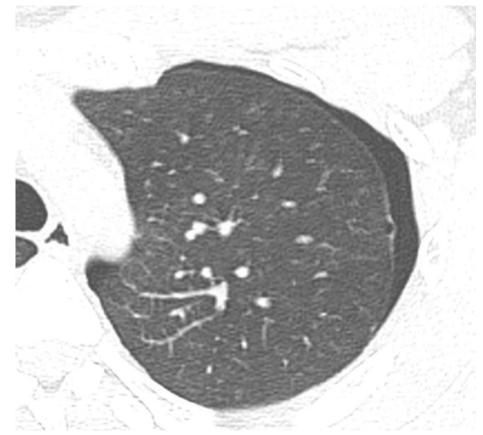

Hallifax RJ. JAMA. 2018;320:1471-1480.

Primary Spontaneous Pneumothorax

Cause of PSP

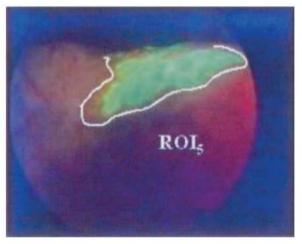
- Subpleural blebs(<1cm) or bullae (≥1cm)
 - known as emphysema-like changes(ELC)
- Visceral pleural porosity
 - Chronic small airway inflammation


Bleb or Bulla



Lyra, R.D.M. Etiology of primary spontaneous pneumothorax. *J Bras Pneumol.* 2016;42:222-226.

Presence of ruptured bullae or bleb during surgery : 3.6%~73%

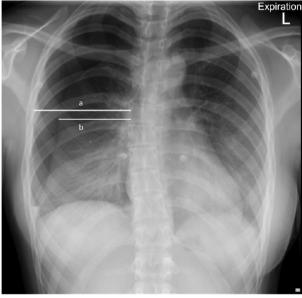


Chronic small airway inflammation

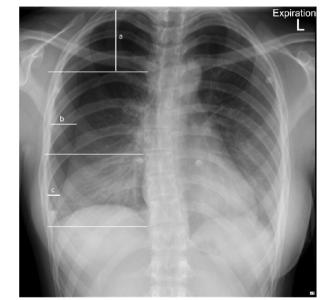
- Smoking related abnormality or respiratory bronchilolitis
- Inflammatory infiltration with lymphocyte and macrophage within wall of bronchioles
- \rightarrow fibrotic change and compensatory emphysema

Visceral pleural porosity

Disruption of mesothelial cell at the visceral pleura
→ replayed by an inflammatory elastofibrotic layer
→ increased porosity → allowing an airleakage



Noppen M. Am J Respir Crit Care Med. 2004;150:680-682.



Noppen M. Respiration. 2008;76:121-127.

Size of pneumothorax (1)

- Light method, $Y=100x[1-b^3/a^3](\%)$
- European Respiration Society (ERS) statement (2015)

- Colin formula, Y=4.2+[4.7x(a+b+c)](%)
- German S3 (2018) guidelines
 a+b+c < 4cm: small, ≥4cm: large

Size of pneumothorax (2)

British Thoracic Society (BTS) guideline(2010)
 <2cm: small, ≥2cm: large

• American College of Chest Physicians (ACCP) guidelines (2001)

<3cm: small, ≥3cm: large

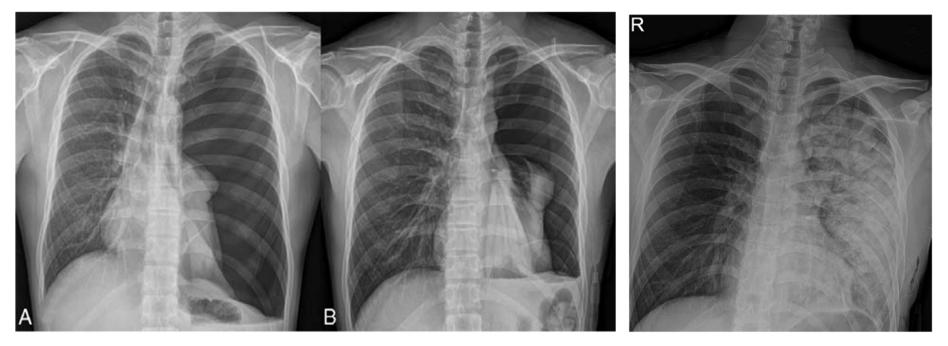
Treatment of first episode of PSP

- Conservative management
- Simple aspiration
- Closed thoracostomy
 - Ambulatory management: small chest tube with Heimlich valve

Conservative management

- Asymptomatic patients with small pneumothorax
- ACCP (2001) guidelines
 - ER stay for 3 to 6 hours and discharge \rightarrow follow up within 2 days
- German S3 (2019) guidelines
 - Check with CXR within 24 hours(outpatient) \rightarrow follow up after 7 days
- Short term hospitalization for observation
 - In cases of unreliable follow up care, distant from hospital...
 - Supplemental oxygen by face mask: increasing the resorption of pneumothorax by up to 4-fold

Simple aspiration


- Asymptomatic or minimal symptomatic patients with large pneumothorax
- Advantage
 - Lesser complication (pain, displacement, bleeding..)
 - Shorter hospitalization
 - Similar recurrence rate
- Disadvantage
 - Lesser primary success rate (failure rate: 33%)
- Conversion to closed thoracostomy
 - More than 2.5L of air aspiration, failure of aspiration in follow up CXR

Closed thoracostomy

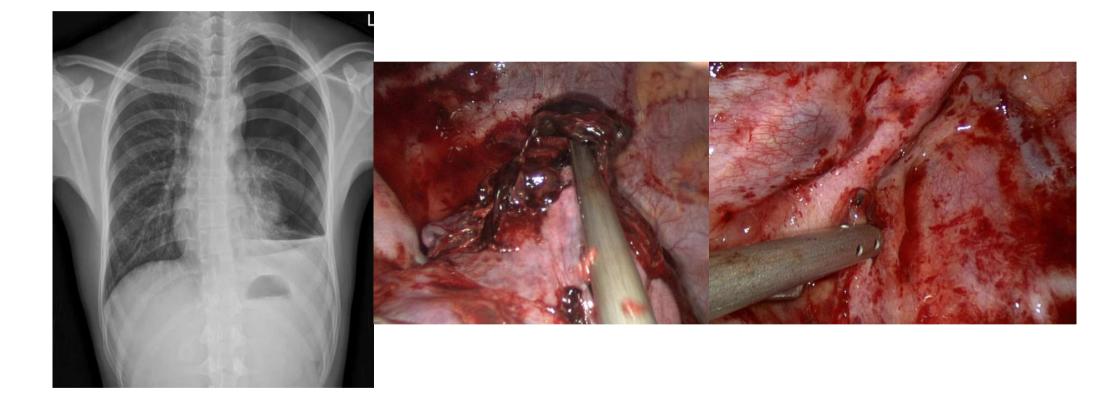
- Symptomatic patients regardless of size, clinically unstable
 - \rightarrow caution of tension pneumothorax
- Size of chest tube
 - Small size drain(<14Fr.) was recommended.
- Suction drain
 - Routinely suction drain: avoidance (BTS, 2010)
 - Increasing risk of re-expansion pulmonary edema (up to 14%)
 - If needed, consider delayed suction drain
- Small chest tube with Heimlich valve: ambulatory management

Re-expansion pulmonary edema

• Sudden cough, breathless, chest tightness, foamy sputum

Song IH. Medicine. 2021;100:e28529.

Definitive treatment


- To prevent recurrence
- Resection of bullous lesion
- Intraoperative pleurodesis (mechanical, cheminical)

Indication of surgery

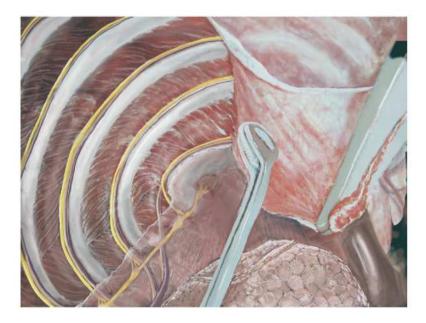
- BTS (2010) guidelines
- Recurrent pneumothorax
 - ✓ Second ipsilateral pneumothorax
 - \checkmark First contralateral pneumothorax
- > Synchronous bilateral spontaneous pneumothorax
- Persistent air leak or failure of lung re-expansion (5
 -7 days)
- Spontaneous hemothorax
- ➢ Professions at risk
- Pregnancy

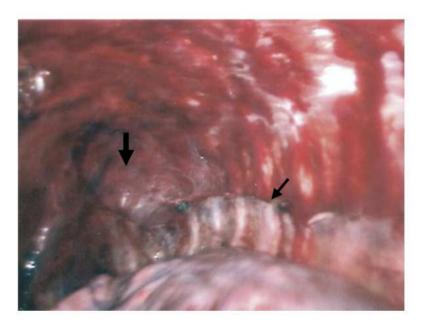
- German S3 (2019) guidelines
- > At the first PSP event, consider radiological finding
 - ✓ Large pneumothorax
 - \checkmark Total atelectasis
 - ✓ Pronounced bullous change

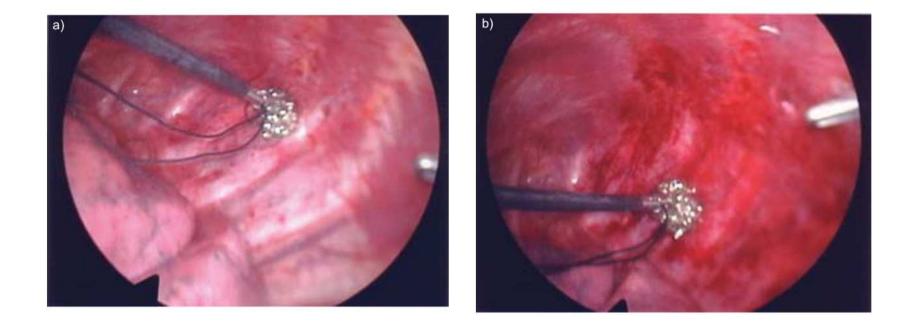
Hydropneumothorax (hemopneumothorax)

Surgical procedure (VATS)

- Resection of lesion
 - Wedge resection or bullectomy
- Additional procedure
 - Partial pleurectomy
 - Mechanical pleurodesis
 - Chemical pleurodesis (including talc)
 - Mesh coverage on the stapler line

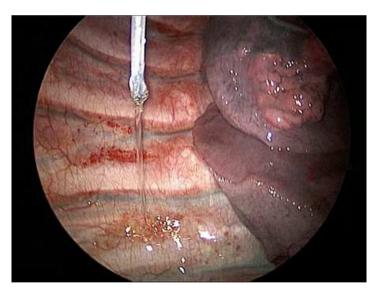

Wedge resection


- Distance from stapler line, resected lung volume
- \rightarrow associated with postoperative recurrence rate, neo bullae formation


Partial pleurectomy

Nathan DP. Ann Thorac Surg. 2008;85:1825-1827.

Mechanical pleurodesis


Tschopp J-M. Eur Respir J. 2006;28:637-650.

Intraoperative chemical pleurodesis (1)

- Talc, tetracycline, bleomycin, iodine, 50% dextrose, viscum...
- Intraoperative talc pleurodesis was recommended (BTS, German S3 guidelines)
- Higher success rate
- Difficulty in reoperation
- Concern about pulmonary function

Intraoperative chemical pleurodesis (2)

Recurrence rate : 0%

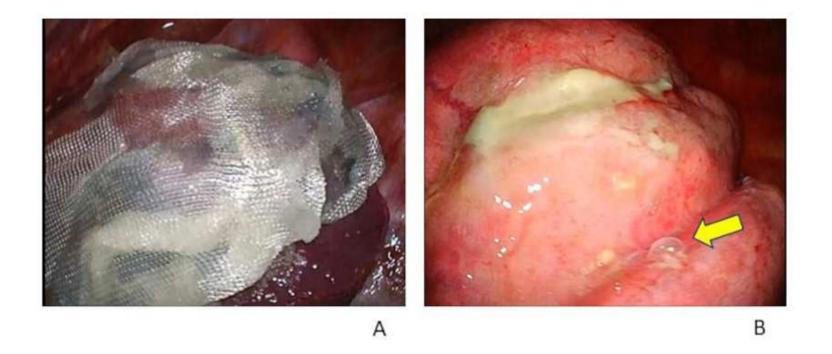
Reoperation after 6 months

Jung HS. Sci Rep. 2021;11:22934.

Covering method (1)

Absorbable polyglycolic acid(PGA) >>

Recurrence rate : 3.4%


oxidized regenerated cellulose(ORC)

Recurrence rate : 17.2%

Oda R. BMJ Open Respir Res. 2022;9:e001231

Covering method (2)

Oda R. BMJ Open Respir Res. 2022;9:e001231

Secondary Spontaneous Pneumothorax

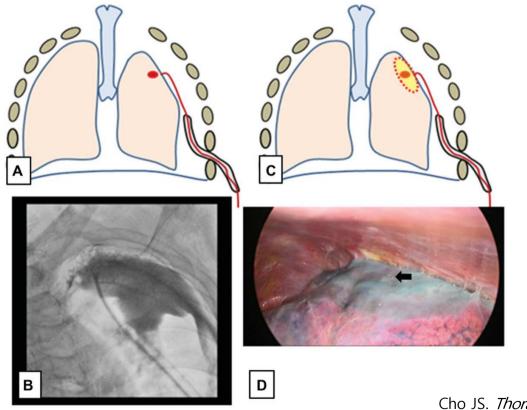
Cause of SSP

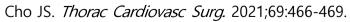
- Chronic obstructive pulmonary disease/emphysema
- Infection: tuberculosis, bacterial infection with lung abscess or necrotizing pneumonia, *Pneumocystis jirovecii* pneumonia(PCP), Covid-19, aspergilloma..
- Tumor: lung cancer, sarcoma..
- Interstitial lung disease: IPF, sarcoidosis..
- Connective Tissue disease: RA, marfan's syndrome, Ehlers Danlos syndrome..
- Diffuse cystic lung disease: Lymphangioleiomyomatosis(LAM), Pulmonary Langerhans cell histiocytosis (PLCH), Birt-Hogg-Dube syndrome (BHD), Lymphoid interstitial pneumonia (LIP)

Characteristics of SSP

- Dyspnea severity 1
- Rapid progression
- Diffuse lesions of lung
- Recurrence rate 1 (more than 50%, within 6 months)
- Consider other morbidity

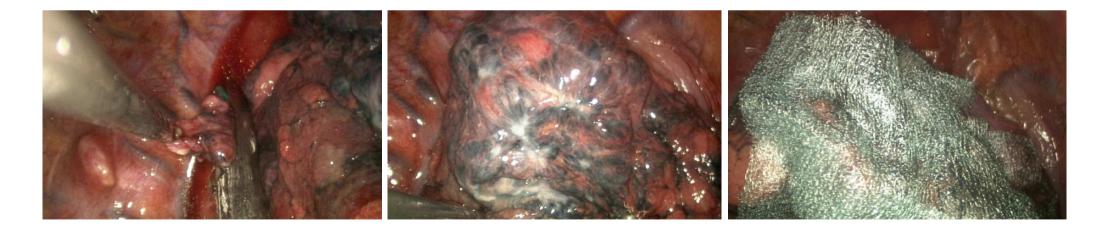
Management of SSP


- Closed thoracostomy + hospitalization
- Consider definitive treatment
 - Surgery + intraoperative chemical pleurodesis/parietal pleurectomy
 - Bedside chemical pleurodesis
- Persistent airleakage in inoperable patients
 - Ambulatory chest tube (Heimlich valve)
 - Endobronchial valve
 - Fibrin glue under pleurography


Endobronchial valve

Morrison M. Breathe. 2016;12:61-64.

Pleurography



Case of SSP

Parapneumonic effusion & empyema

Introduction

- Empyema : pus in the chest
- Cause : Pneumonia(m/c), lung abscess, postop complication, trauma, subphrenic abscess, sepsis, Tbc...
- Pneumonia -> 20~40%; parapneumonic effusion -> 5~10%; empyema -> 10%; death
- Empyema incidence in pneumonia
 - pre-antibiotic era : 5% , post-antibiotic era : 2%
 - Recently increasing : old age, co-morbidity

Davies HE. Thorax. 2010;65 suppl :ii41-53.

Incidence

<18 years 15.0 ≥65 years 18-39 vears Hospitalisation rate per 100 000 2 2 2 5 2 2 -64 vears In USA ≥ 65 years 1996~2008 40-64 years National hopitalisation data <18 years In 1996, 3.04/100,000 18-39 years In 2008, 5.98/100,000 0.0 2001 2002 2003 2007 2008 1996 1997 1998 1999 2000 2004 2005 2006

Parapneumonic empyema-related hospitalisations

Year

Grijalva CG. Thorax 2011;66:663-8.

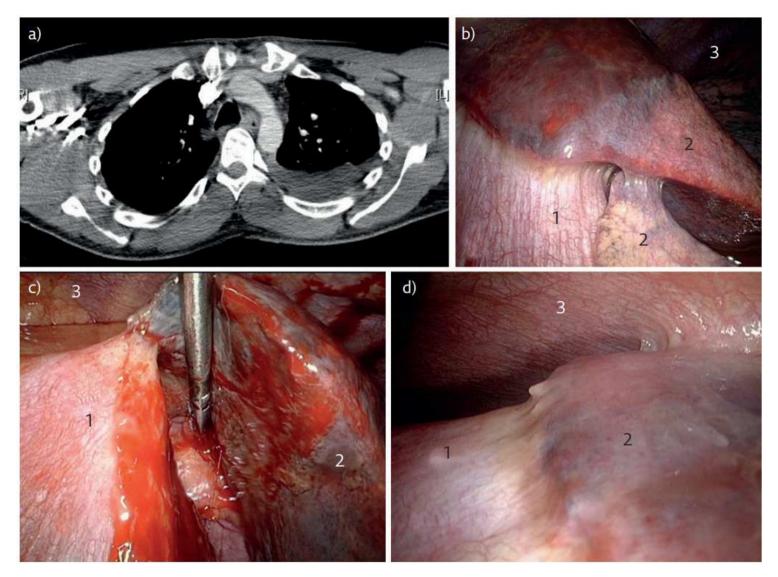
Stage of Empyema

Stage 1

Simple parapneumonic effusion(uncomplicated), acute exudative stage, pre-empyema stage

Stage 2

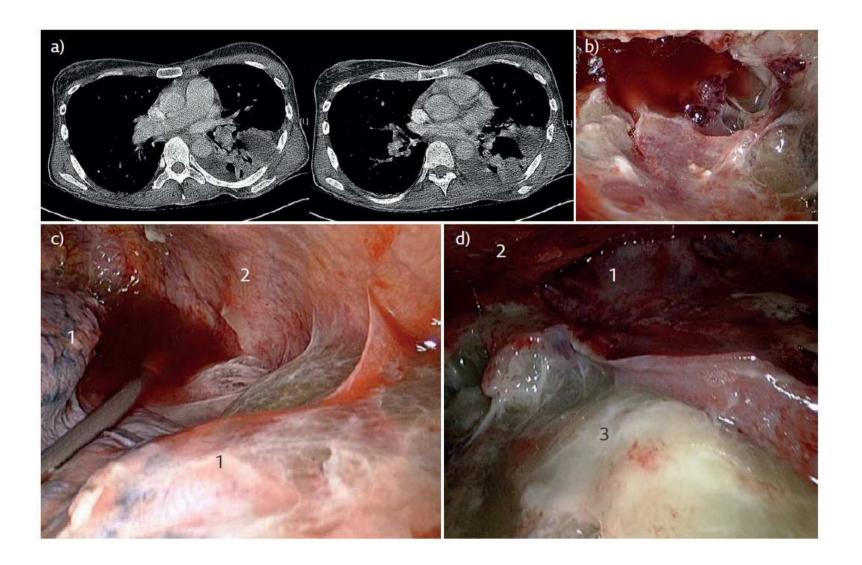
Transitional fibrinopurulent stage, complicated parapneumonic effusion, empyema


Stage 3

Chronic organizing stage, fibrothorax

Simple Parapneumonic Effusion

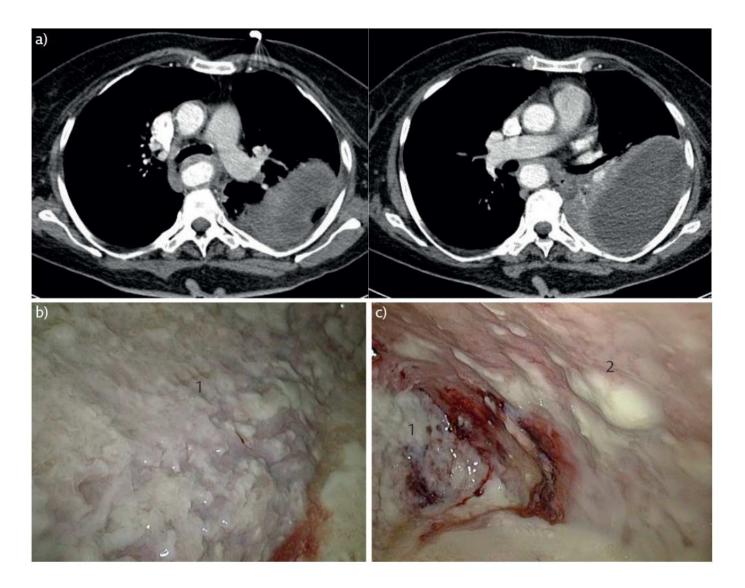
- Fluid movement into pleural cavity d/t increased capillary vascular permeability
- Free flowing exudate effusion
- Pleural fluid analysis
 - Low white cell count, LDH < ¹/₂ level of serum, Normal pH, Normal glucose level
- No bacterial organism


Davies HE. Thorax. 2010;65 suppl :ii41-53.

Subotic D. *Breathe.* 2018;14:302-310.

Fibrinopurulent Stage

- Complicated parapneumonic effusion(without pus), Empyema(with pus)
- Bacterial invasion -> immune response -> migration of neutrophil, activation of the coagulation cascade ->fibrin deposit -> loculation
- Pleural fluid analysis
 - pH<7.2, glucose <40mg/dL, LDH > 1000IU/L



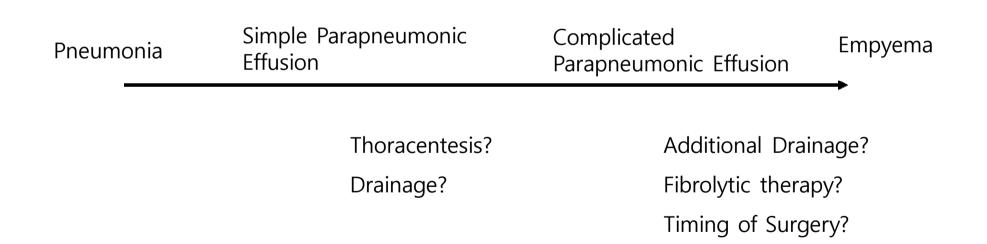
Subotic D et al. *Breathe.* 2018;14:302-310.

Chronic Organizing Stage

- Peel : solid fibrous pleura cortex
 - Preventing re-expansion
 - Impairing lung function
 - Potential for infection

Davies HE. Thorax. 2010;65 suppl :ii41-53.

Subotic D. *Breathe.* 2018;14:302-310.


Guidelines

- American College of Chest Physicians (ACCP) guidelines (2000)
- British Thoracic Society (BTS) Guidelines (2010)
- European Association for Cardio-Thoracic Surgery (EACTS) Guideline (2015)
- American Association for Thoracic Surgery (AATS) Guidelines (2017)

Management of Empyema

- Antibiotics
- Thoracentesis
- Drainage
- Fibrinolytic therapy
- Surgical treatment

Question in Each Stage

Empirical Antibiotics

- Community-acquired
 - 2nd or 3rd cephalosporin + metronidazole
 - \bullet Aminopenicillin with β -lactamase inhibitor
- Hospital-acquired
 - MRSA, *P. aeruginosa*, anaerobes
 - Vancomycin, cefepime and metronidazole
 - Vancomycin and piperacillin/tazobactam
- Avoidance of aminoglycoside

AATS guideline 2017

Thoracentesis

• Class III no benefit: Thoracentesis without pleural drain placement is not recommended for the treatment of parapenumonic effusion or empyema (LOE C).

Pleural drainage

Class I: Image-guided pleural drain placement is useful in the treatment of earlystage, minimally septated empyema (LOE B).

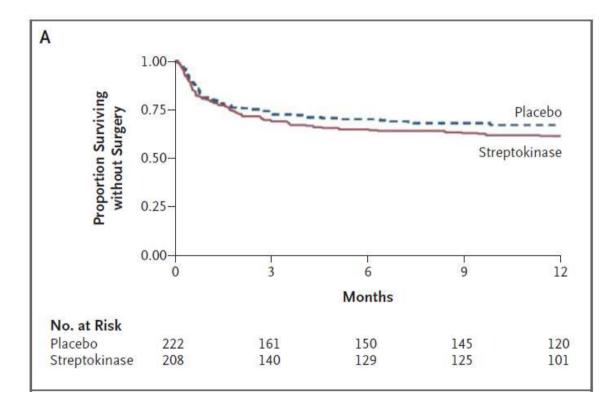
Class IIa: In septated effusions, placement of small bore catheters are recommended in patients that are not surgical candidates (LOE C).

Class I: Routine drain flushing is recommended to prevent occlusion (LOE B).

Class I: Tube thoracostomy should be combined with close CT follow-up to confirm adequacy of drainage. Persistence of any undrained fluid should prompt additional drains or more aggressive management (LOE C).

AATS guideline 2017

Fibrinolytic Therapy


• Class IIa: Intrapleural fibrinolytics should not be used routinely for complicated pleural effusions and early empyemas (LOE A).

Multicenter Intrapleural Sepsis Trial(MIST) I

- RCT, 52 centers in UK
- Inclusion : pleural fluid with purulent, positive on culture, positive in Gram stain or pH < 7.2
- 427 patients : streptokinase(208) vs placebo(222)
- Streptokinase : 250000IU Bid for 3 days
- Indication of surgical drainage : residual effusion + evidence of persistent infection
- Primary end point : death or surgery (3 month)
- Secondary end point : death or surgery (12 month), hospital stay, residual abnormality on CXR, dynamic lung volume, bleeding after surgery....

Maskell NA. N Engl J Med. 2005;352:865-74.

Result (1)

Primary outcome : death or surgery

Streptokinase vs Placebo At 3 month

: 31% vs 27%, p=0.43

At 12 month

: 40% vs 34%, p=0.24

Maskell NA et al. N Engl J Med. 2005;352:865-74.

Result (2)

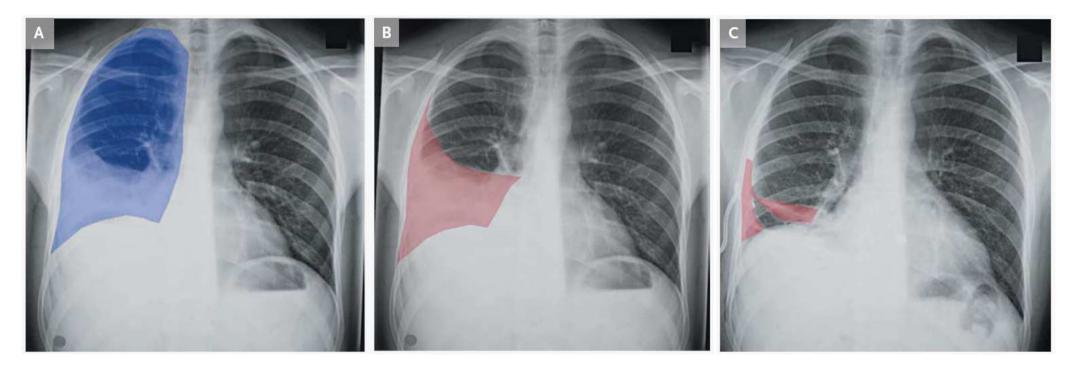
- Death (Streptokinase vs Placebo)
 - At 3 month : 16% vs 14%, *p*=0.66
 - At 12 month : 23% vs 20%, *p*=0.64
- Surgical drainage
 - At 3 month : 16% vs 14%, *p*=0.87
 - At 12 month : 18% vs 16%, *p*=0.60

Discussion from MIST I

- Negative result d/t
 - Dosage of streptokinase
 - Antistreptokinase-antibody
 - Low level of plasminogen \rightarrow tPA? \rightarrow MIST II
 - Viscosity of pus \rightarrow DNase? \rightarrow MIST II
- Conclusion
 - Streptokinase should be avoided in pleural infection

Maskell NA et al. N Engl J Med. 2005;352:865-74.

Surgical Outcome from MIST I


- Surgery : streptokinase + placebo
 - At 3 month : 64 (32+32)
 - At 12 month : 70 (36+34)
- Type of surgery (57)
 - 9 (5+4) : VATS drainage
 - 39 (17+22) : thoracotomy and decortication
 - 9 (5+4) : another form including rib resection
- Mortality (10%~)
 - 7 (2+5)

Maskell NA et al. N Engl J Med. 2005;352:865-74.

Multicenter Intrapleural Sepsis Trial II

- RCT, 11 centers in UK
- Inclusion : pleural fluid with purulent, positive on culture, positive in Gram stain or pH < 7.2
- 210 patients : t-PA (48), DNase(46), t-PA+DNase(48), Placebo(51)
- t-PA : 10mg bid for 3 days, DNase : 5mg bid for 3 days
- Indication of surgical drainage : residual effusion + evidence of persistent infection
- Primary end point : area of pleura opacity in CXR from day 1 to day 7
- Secondary end point : % reduction of pleural opacity, surgical referral (3, 12 months), hospital stay, volume of drain to day 7, inflammatory maker to day 7, death (3, 12 months), adverse event

Multicenter Intrapleural Sepsis Trial II

Result (1)

Outcome	t-PA	DNase	t-PA–DNase	Placebo
Change from baseline in hemithorax area occupied by effusion (primary outcome) — %	-17.2±24.3	-14.7±16.3	-29.5±23.3	-17.2±19.6
Percent difference vs. placebo (95% CI)	2.0 (-4.6 to 8.6)	4.5 (-1.5 to 10.5)	-7.9 (-13.4 to -2.4)	NA
P value	0.55	0.14	0.005	NA
Surgical referral — no. referred/total no. (%)	3/48 (6)	18/46 (39)	2/48 (4)	8/51 (16)
Odds ratio vs. placebo (95% CI)	0.29 (0.07 to 1.25)	3.56 (1.30 to 9.75)	0.17 (0.03 to 0.87)	NA
P value	0.10	0.01	0.03	NA
Hospital stay — no. of days	16.5±22.8	28.2±61.4	11.8±9.4	24.8±56.1
Percent difference vs. placebo (95% CI)	-8.6 (-40.8 to 3.3)	3.6 (-19.0 to 30.8)	-14.8 (-53.7 to -4.6)	NA
P value	0.21	0.73	<0.001	NA

Result (3)

Mortality	t-PA (48)	DNase (46)	t-PA-DNase (48)	Placebo (50)	<i>p</i> value
At 3 months	4 (8%)	6 (13%)	4 (8%)	2 (4%)	0.46
At 12 months	5 (11%)	9 (20%)	5 (11%)	4 (8%)	0.37

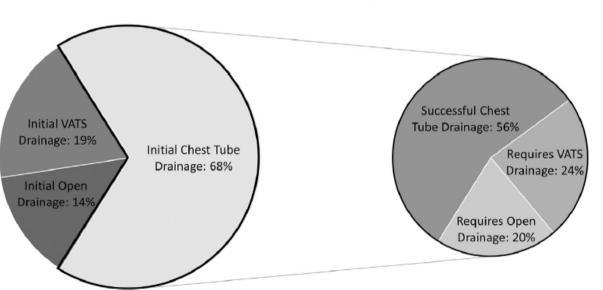
Conclusion from MIST II

• Benefit of t-PA–DNase therapy

✓ the frequency of surgical referral

 \checkmark the duration of the hospital stay

- Mortality : no benefit
- This combined treatment may therefore be useful in patients in whom standard medical management has failed and thoracic surgery is not a treatment option.

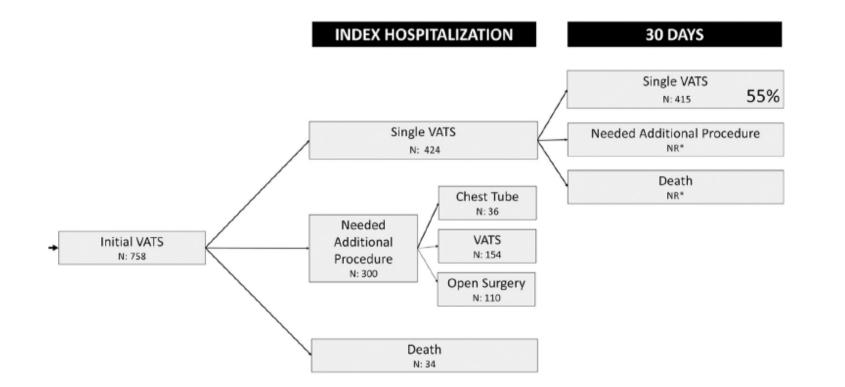

Surgical Treatment

- Class IIa: Video-assisted thoracoscopic surgery (VATS) should be the first-line approach in all patients with stage II acute empyema (LOE B) (AATS guideline 2017).
- There is nothing to be lost in attempting VATS in all cases, provided that conversion to open thoracotomy is performed if resolution of the empyema and lung expansion is not adequately achieved (EACTS guideline, 2015).

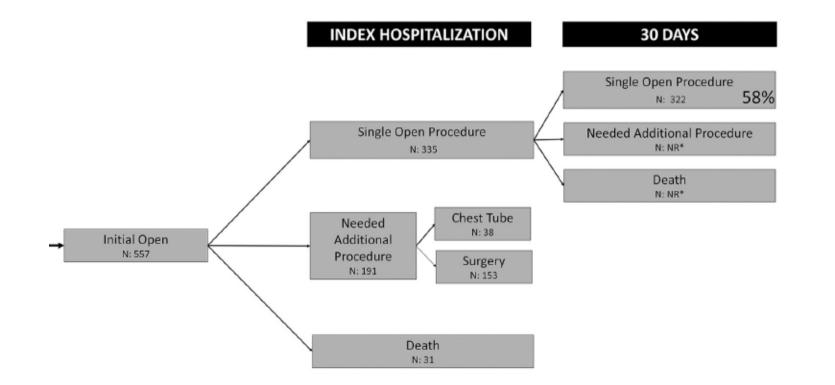
Type of Surgery

- VATS vs Open
- Debridement vs Decortication
- Goal of surgery
 - ✓Complete evacuation of potentially infected fluid
 - ✓ Complete re-expansion of the lung

Surgical Conversion from Chest Tube



Empyema Treatment by Initial Drainage Procedure


Fate of Initial Chest Tube

Fate of Initial VATS

Fate of Initial Open

Outcomes according to Initial Treatment

		Drainage or	Decortication	
	Chest Tube	VATS	Open	
Outcome Measure	No.	4,095)	p	
Patients	1,563 (38.2)	1,313 (32.1)	1,219 (29.8)	
Length of stay, days	14 (9-22)	12 (9-19)	15 (10-21)	<0.001
Mortality rate				
Index hospitalization	241 (15.4)	62 (4.7)	73 (6.0)	< 0.001
30 days	286 (18.3)	71 (5.4)	83 (6.8)	< 0.001
90 days	322 (20.6)	83 (6.3)	91 (7.5)	<0.001
30-day readmission rate				
For any reason	276 (20.9)	144 (11.5)	154 (13.4)	< 0.001
For empyema	96 (7.3)	48 (3.8)	47 (4.1)	<0.001
90-day readmission rate				
For any reason	391 (29.6)	236 (18.9)	236 (20.6)	< 0.001
For empyema	113 (8.9)	55 (4.4)	63 (5.6)	< 0.001
30-day reintervention rate	80 (6.1)	24 (1.9)	24 (2.1)	<0.001
90-day reintervention rate	113 (8.8)	37 (3.0)	45 (4.0)	< 0.001

Outcome	Overall N = 7316	$\begin{array}{l} Tho racotomy\\ decortication \ N=2881 \end{array}$	VATS decortication $N = 4435$	P value	
Duration of procedure (min)	95.0 (68.0-134.0)	114.0 (82.0-158.0)	85.0 (60.0-118.0)	<.0001	
Length of stay (d)	12.0 (8.0-18.0)	13.0 (9.0-20.0)	11.5 (8.0-17.0)	<.0001	
Time (d) from admit to surgery	4.0 (2.0-7.0)	4.0 (2.0-8.0)	4.0 (2.0-7.0)	.0001	
Postoperative length of stay (d)	7.0 (5.0-11.0)	8.0 (6.0-13.0)	7.0 (5.0-11.0)	<.0001	
Prolonged postoperative LOS (>19 d)	707 (9.7%)	343 (11.9%)	364 (8.2%)	<.0001	
Any postoperative event	2875 (39.3%)	1306 (45.3%)	1569 (35.4%)	<.0001	
Unexpected reoperation	281 (3.8%)	129 (4.5%)	152 (3.4%)	.0224	
Air leak >5 d duration	257 (3.5%)	117 (4.1%)	140 (3.2%)	.0401	
Atelectasis requiring bronchoscopy	235 (3.2%)	117 (4.1%)	118 (2.7%)	.0009	
Pulmonary embolus	26 (0.4%)	10 (0.3%)	16 (0.4%)	.9236	
Ventilator support >48 h	497 (6.8%)	242 (8.4%)	255 (5.7%)	<.0001	
Reintubation	198 (3.7%)	102 (4.7%)	96 (3.0%)	.0019	
Tracheostomy	199 (2.7%)	104 (3.6%)	95 (2.1%)	.0002	
Other pulmonary events	207 (2.8%)	81 (2.8%)	126 (2.8%)	.9407	
Respiratory failure	154 (4.8%)	80 (6.5%)	74 (3.7%)	.0003	
Wound infection	5 (0.2%)	4 (0.4%)	1 (0.1%)	.1152	
Unexpected admission to ICU	260 (3.6%)	102 (3.5%)	158 (3.6%)	.9602	
New renal failure per RIFLE criteria	164 (3.1%)	69 (3.6%)	95 (2.9%)	.1828	
Red cell transfusion (intraoperative, postoperative)	1926 (26.3%)	1012 (35.1%)	914 (20.6%)	<.0001	
Respiratory failure or ARDS	314 (4.3%)	154 (5.3%)	160 (3.6%)	.0003	

Towe CW et al. J Thorac Cardiovasc Surg. 2019;157:1288-97.

Outcome	Overall N = 7316	$\begin{array}{l} Tho racotomy\\ decortication \ N=2881 \end{array}$	VATS decortication $N = 4435$	P value
Discharge location				
Home	5394 (73.7%)	2044 (70.9%)	3350 (75.5%)	
Extended care, TCU, rehabilitation	1140 (15.6%)	486 (16.9%)	654 (14.7%)	
Other hospital	138 (1.9%)	70 (2.4%)	68 (1.5%)	
Nursing home	311 (4.3%)	137 (4.8%)	174 (3.9%)	
Hospice	54 (0.7%)	17 (0.6%)	37 (0.8%)	
Other	77 (1.1%)	37 (1.3%)	40 (0.9%)	.0002
Readmission – 30 d of procedure (January 1, 2009, to December 31, 2011)	144 (6.9%)	60 (6.4%)	84 (7.3%)	.4094
Readmission – 30 d of discharge (January 1, 2012, to June 31, 2016)	452 (8.7%)	156 (8.0%)	296 (9.0%)	.2889
Discharged with chest tube	675 (9.2%)	288 (10.0%)	387 (8.7%)	.0664
Operative mortality	228 (3.1%)	106 (3.7%)	122 (2.8%)	.0257
Any major postoperative event	1138 (15.6%)	520 (18.0%)	618 (13.9%)	<.0001
Any cardiovascular complications	494 (6.8%)	223 (7.7%)	271 (6.1%)	.0066
Any gastrointestinal complications	246 (3.4%)	111 (3.9%)	135 (3.0%)	.0608
Any urologic complications	250 (3.4%)	99 (3.4%)	151 (3.4%)	.9421
Any neurologic/psychiatric complications	258 (3.5%)	100 (3.5%)	158 (3.6%)	.8357

Towe CW et al. J Thorac Cardiovasc Surg. 2019;157:1288-97.

	Major morb	oidity	Discharge loo other than h		Postoperative L	OS >19 d	Mortality		
Risk factor	Adjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value	
Dialysis			1.60 (1.11-2.29)	.0113			2.23 (1.33-3.77)	.0026	
$eGFR \le 60$	1.81 (1.54-2.12)	<.0001	1.48 (1.23-1.79)	<.0001	2.25 (1.82-2.77)	<.0001	1.94 (1.38-2.74)	.0002	
COPD	1.26 (1.09-1.46)	.0019	1.30 (1.10-1.53)	.0018	1.42 (1.15-1.76)	.0013	1.49 (1.08-2.04)	.0139	
ASA risk class: III/IV/ V/VI vs I/II	2.07 (1.66-2.60)	<.0001	2.28 (1.70-3.07)	<.0001	4.51 (2.60-7.82)	<.0001	10.15 (1.41-73.12)	.0215	
Zubrod: in bed/bedridden/ moribund vs normal activity/fully ambulatory	1.84 (1.62-2.09)	<.0001	2.34 (2.01-2.73)	<.0001	2.33 (1.88-2.88)	<.0001	2.46 (1.69-3.57)	<.0001	
VATS	0.69 (0.60-0.78)	<.0001	0.74 (0.64-0.85)	<.0001	0.79 (0.65-0.96)	.0162	0.74 (0.56-0.99)	.0444	
Days from admission to surgery per 1-d increase when ≤5 d	1.02 (0.98-1.06)	.4244	1.01 (0.96-1.06)	.7732	1.09 (1.0 <mark>2-1.16</mark>)	.0127	1.20 (1.07-1.33)	.0015	
Days from admission to surgery per 1-d increase when >5 d	1.02 (1.01-1.04)	. 0 011	1.07 (1.06-1.09)	< <u>.0001</u>	1.07 (1.05-1.09)	<.0001	1.02 (1.00-1.05)	.0782	
Procedure time per 10-min increase	1.05 (1.04-1.06)	<.0001			1.03 (1.02-1.05)	<.0001			

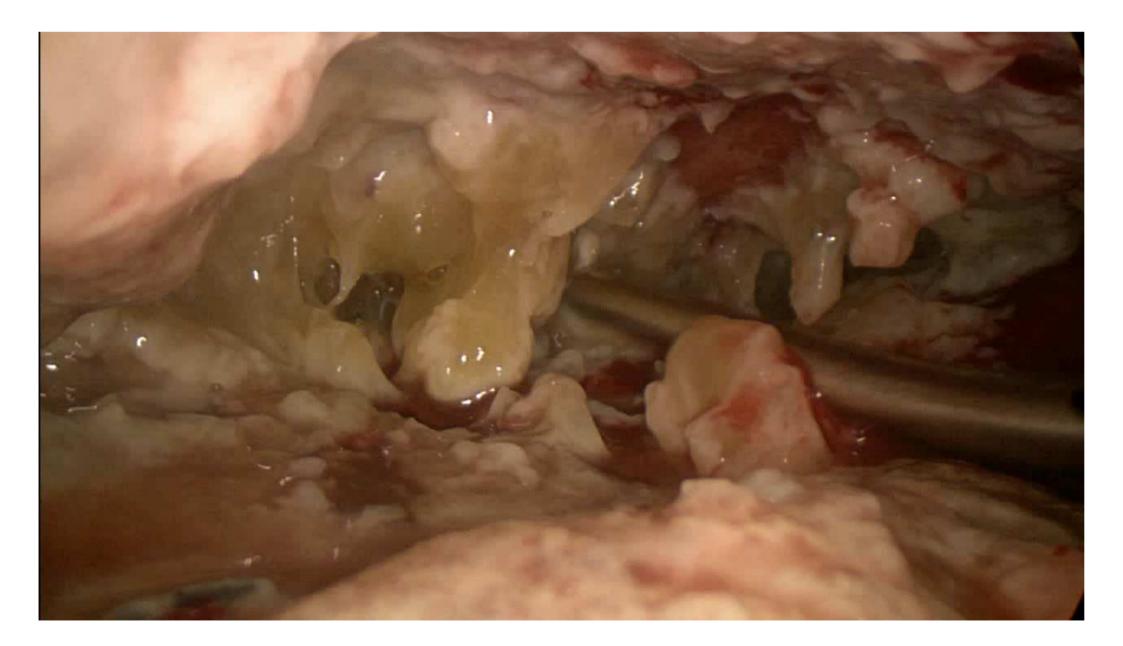
Towe CW et al. J Thorac Cardiovasc Surg. 2019;157:1288-97.

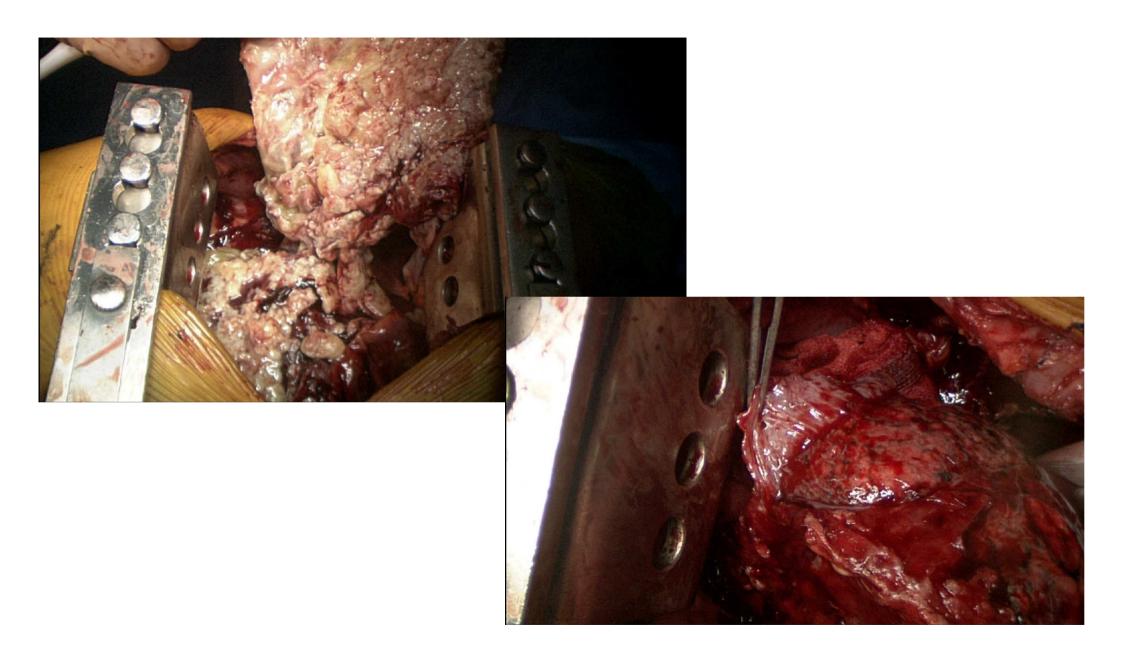
Table 2. Identification of Predictors for ConversionThoracotomy in 178 Patients With Presumed Stage IIEmpyema Accessed by Video-Assisted Thoracoscopic Surgeryby Use of a Univariate and a Multivariate Analysis With aMultiple Stepwise Logistic Regression

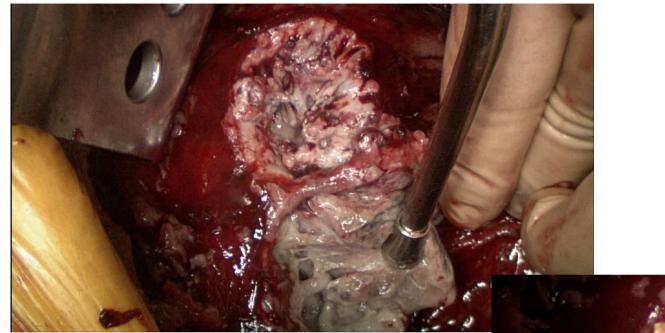
	Univa Anal		Multivariate Analysis		
Risk Factors	p Value	Odds Ratio ^a	p Value	Odds Ratio ^a	
Age	0.07	0.98	0.62	0.99	
Sex (male)	0.01	0.44	0.54	0.69	
Etiology					
Postpneumonic	0.004	2.47	0.56	0.72	
Postoperative	0.04	0.43			
Posttraumatic	0.18	0.54			
Postembolic	0.77	0.83			
Tuberculosis	0.18	0.40			
Bacteria	0.78	0.92			
Gram positive	0.03	0.51	0.08	0.29	
Gram negative	< 0.0001	6.60	<0.01	5.77	
Time interval					
Т	< 0.0001	2.17	< 0.0001	2.35	

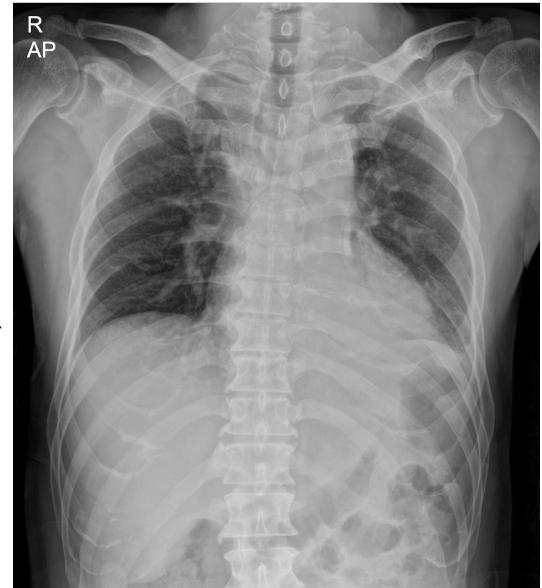
Lardinois D et al. Ann Thorac Surg. 2005;79:1851-6.

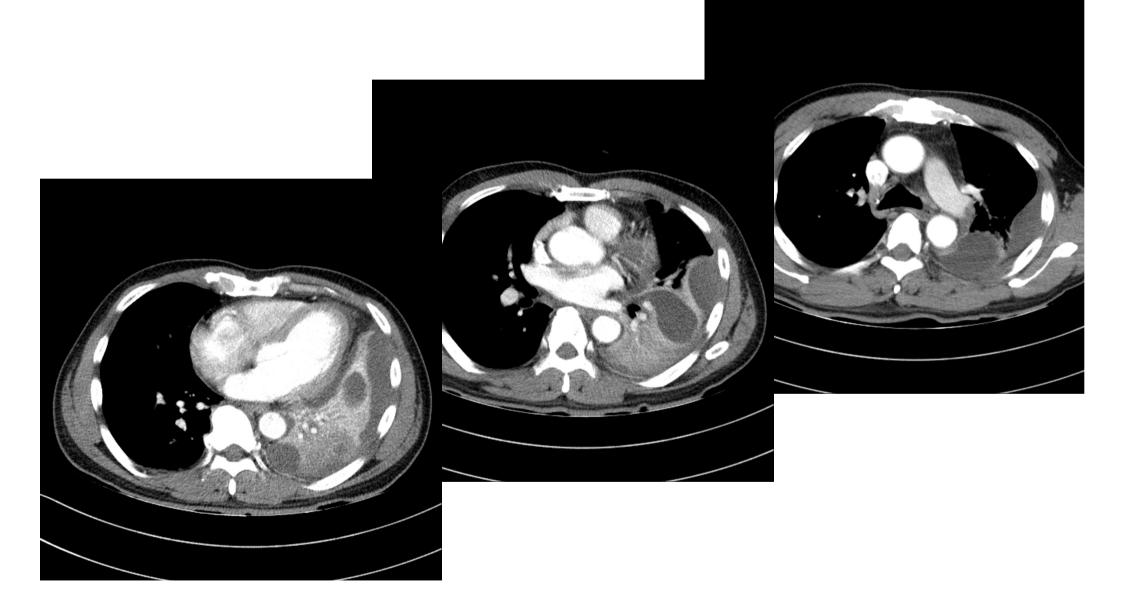
Case 1

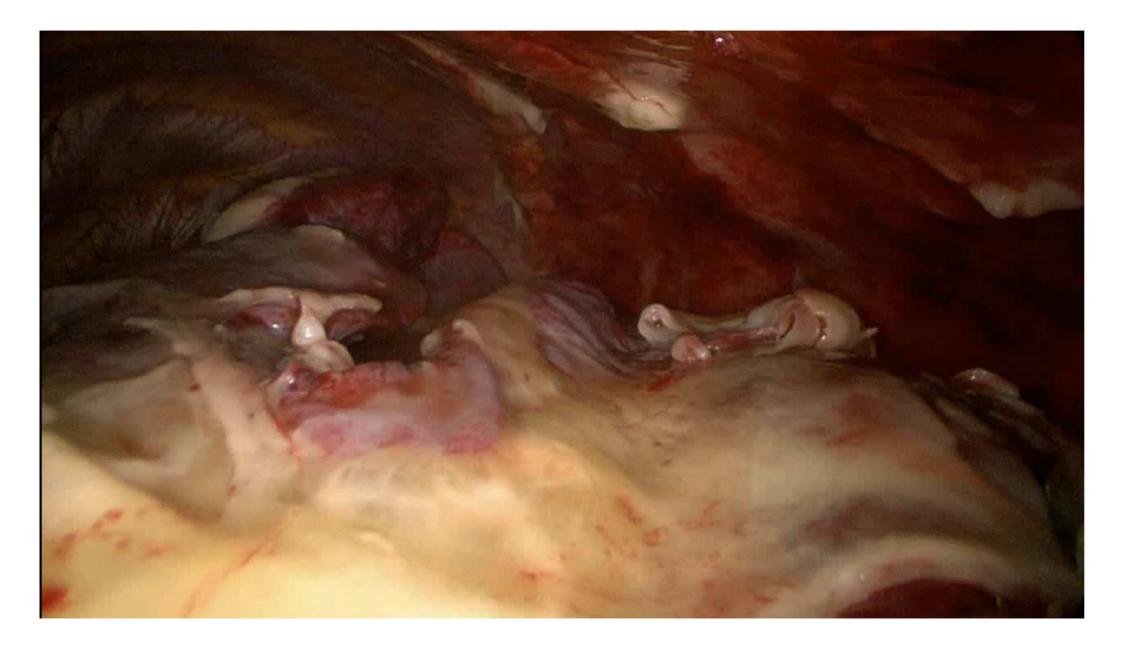

M/71

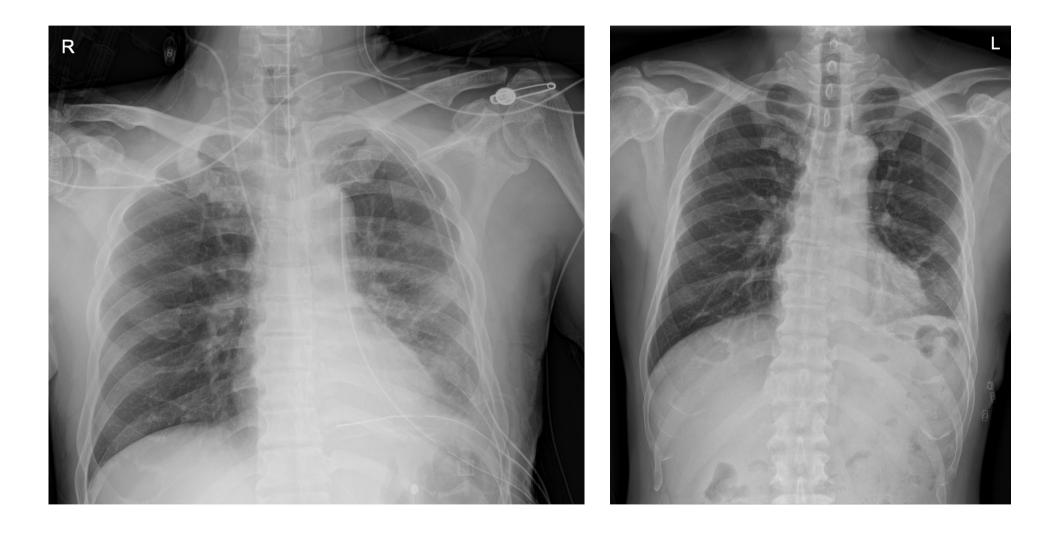

HTN, DM, carotid a stenosis, heavy alcoholics

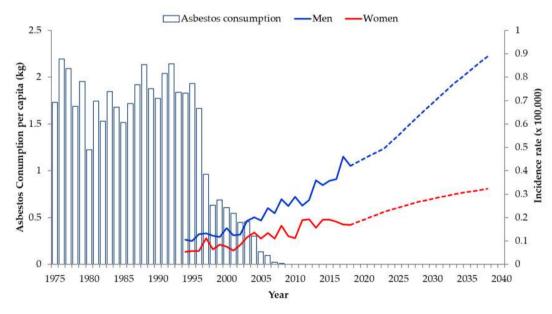

Necrotizing pneumonia, RLL






Case 2 M/56


No underlying Dz. Pneumonia, LLL

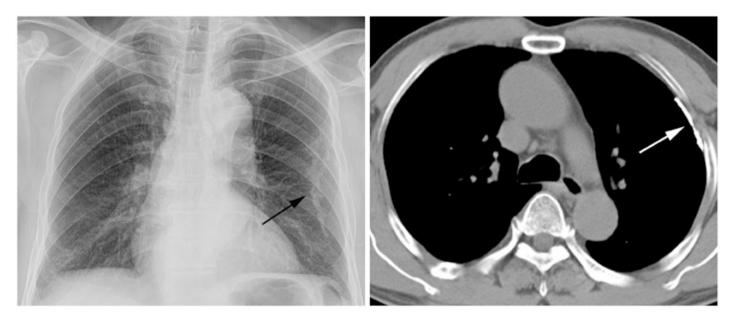


Malignant Mesothelioma

Introduction

- Rare pleura tumor
- 20-40 years later occurrence after asbestos exposure

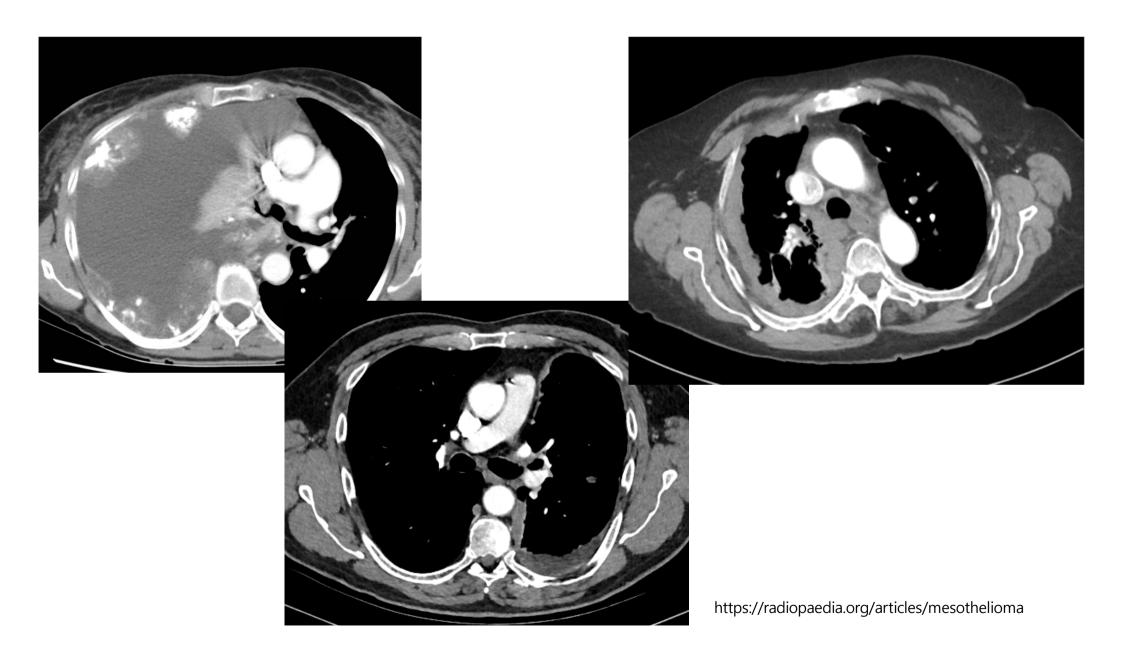
Kwak K. Int J Environ Res Public health. 2021;18:6614.


Etiology

- Asbestos (m/c)
- Mantle radiation
- Erionite
- Genetic factor: mutation in BAP1 gene

Pleural plague

• Marker of asbestos exposure


Kim Y. Korean J Radiol. 2015;16:1142-1152.

Radiologic finding

https://radiopaedia.org/articles/mesothelioma

Effusion cytology

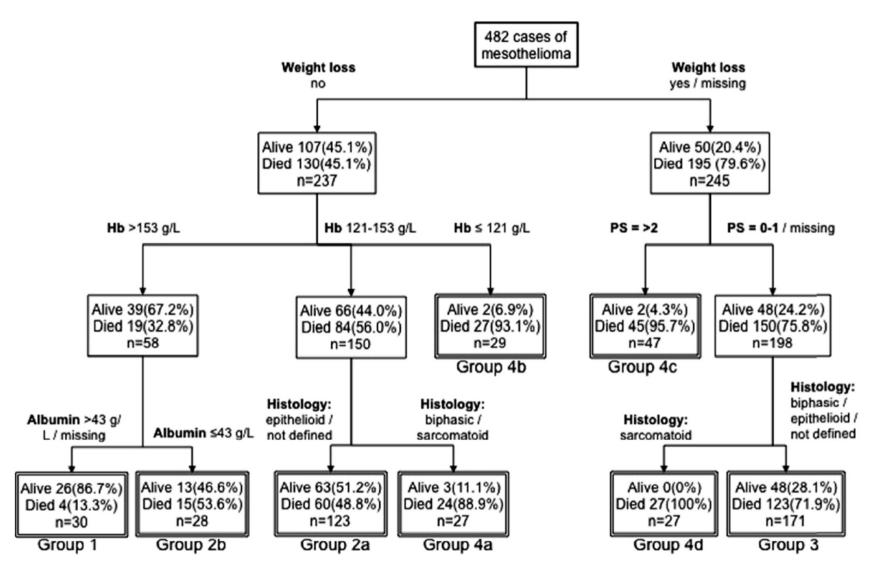
- Epithelioid
 - Effusion (+)
- Sarcomatoid
 - Effusion (-)
- Diagnostic sensitivity : 30%~75%
- Immunohistochemical markers
- (+): Calretinin, WT-1, D2-40, cytokeratin 5/6
- (-): TTF-1, CEA

Pleural biopsy

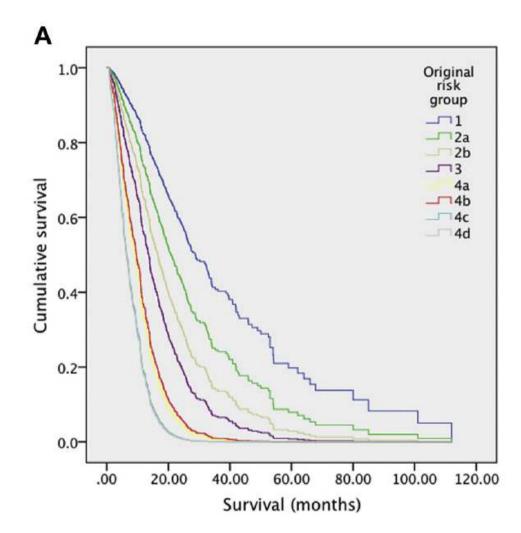
- VATS biopsy: gold standard
 - sensitivity of 95%, specificity of 100%, negative predictive value of 94%
- CT-guided needle biopsy: nodular lesion (+)
- Open pleural biopsy: obliterated pleural space
- Biopsy tract recurrence 1 1

TNM Stage (1)

Definition
or (T)
Primary tumor cannot be assessed
No evidence of primary tumor
Tumor limited to the ipsilateral parietal \pm visceral \pm mediastinal \pm diaphragmatic pleura
 Tumor involving each of the ipsilateral pleural surfaces (parietal, mediastinal, diaphragmatic, and visceral pleura) with at least one of the following features: involvement of diaphragmatic muscle extension of tumor from visceral pleura into the underlying pulmonary parenchyma
 Describes locally advanced but <i>potentially resectable</i> tumor. Tumor involving all of the ipsilateral pleural surfaces (parietal, mediastinal, diaphragmatic, and visceral pleura) with at least one of the following features: involvement of the endothoracic fascia extension into the mediastinal fat solitary, completely resectable focus of tumor extending into the soft tissues of the chest wall nontransmural involvement of the pericardium
 Describes locally advanced <i>technically unresectable</i> tumor. Tumor involving all of the ipsilateral pleural surfaces (parietal, mediastinal, diaphragmatic, and visceral pleura) with at least one of the following features: diffuse extension or multifocal masses of tumor in the chest wall, with or without associated rib destruction direct transdiaphragmatic extension of tumor to the peritoneum direct extension of tumor to the contralateral pleura direct extension of tumor to mediastinal organs direct extension of tumor into the spine tumor extending through to the internal surface of the pericardium with or without a pericardial effusion, or tumor involving the myocardium


TNM Stage (1)

Regional	ymph nodes (N)
NX	Regional lymph nodes cannot be assessed
NO	No regional lymph node metastases
N1	Metastases in the ipsilateral bronchopulmonary, hilar, or mediastinal (including the internal mammary, peridiaphragmatic, pericardial fat pad, or intercostal lymph nodes) lymph nodes
N2	Metastases in the contralateral mediastinal, ipsilateral, or contralateral supraclavicular lymph nodes
Distant m	etastasis (M)
MO	No distant metastasis
M1	Distant metastasis present


Rusch V. J Thorac Oncol. 2016;11:2112-2119.

Pre-op evaluation

- Chest and abdomen CT with contrast
- PET-CT (before pleurodesis)
- Mediastinoscopy or EBUS
- Chest MRI
- VATS (for contralateral thorax)
- Laparoscopy(for transdiaphragmatic extention)

Brims F.J.H. J Thorac Oncol. 2016;11:573-582.

Brims F.J.H. J Thorac Oncol. 2016;11:573-582.

Indication of Surgery

- NCCN guideline 2022
 - cStage I-IIIA and epitheloid histology
 - Considered for biphasic histology with early stage
- ERS/ESTS/EACTS/ESTRO guideline 2020
 - In prospective randomised control clinical trial or in national/international registries
 - EP/D >> EPP

NCCN guideline 2022

Surgery

• Goal: cytoreduction surgery, macroscopic complete resection

• Type

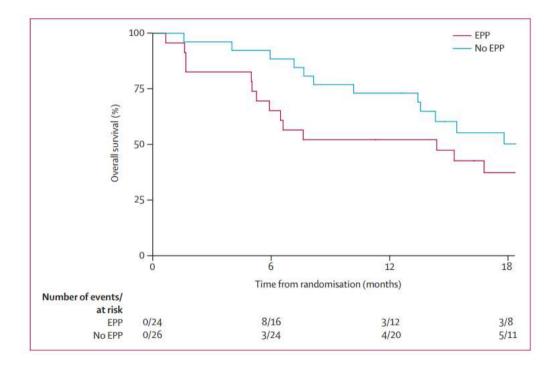
- Extrapleural pneumonectomy (EPP)
- Extended pleurectomy/decortication(EP/D)
- Pleurectomy/decortication (P/D)
 - : sparing pericardium and diaphragm

*Partial pleurectomy

: partial removal for diagnostic or palliative

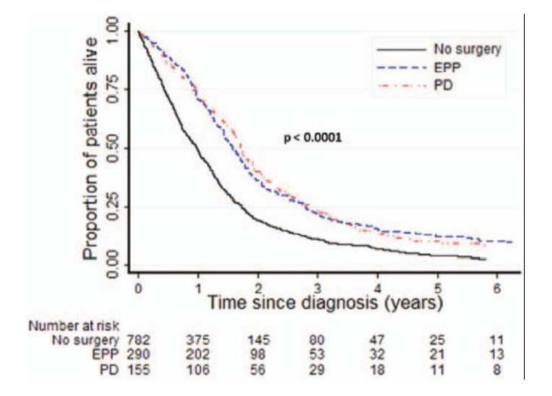
Rice D. J Thorac Oncol. 2011;6:1304-1312.

EPP


Collaud S. Ann Cardiothorac Surg. 2012;1:537-543.

P/D

Ali J.M. Shanghai Chest. 2018;2:46.

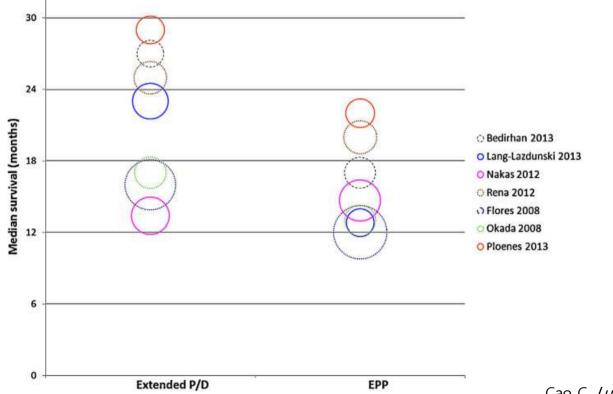

Mesothelioma and Radical Surgery (MARS) trial

1-year recurrence free survival EPP vs no EPP: 34.8% vs 42.3%

Treasure T. Lancet Oncol. 2011;12:763-772.

A Multicenter Retrospective Analysis of 1365 Consecutive Patients

Bovolato P. J Thorac Oncol. 2014;9:390-396.


EPP vs EP/D

	Extende	d P/D	EPF			Risk Ratio	Ris	k Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	I M-H, Rai	ndom, 95% Cl
Bedirhan 2013	0	20	4	31	3.6%	0.17 [0.01, 2.98]		<u> </u>
Flores 2008	13	278	27	385	71.7%	0.67 [0.35, 1.27]	-	
Lang-Lazdunski 2012	0	54	1	22	3.0%	0.14 [0.01, 3.30]	.	
Nakas 2012	2	67	7	98	12.5%	0.42 [0.09, 1.95]		
Okada 2008	0	34	1	31	3.0%	0.30 [0.01, 7.22]	8	
Ploenes 2013	0	23	1	25	3.0%	0.36 [0.02, 8.45]	8 	
Rena 2012	0	37	2	40	3.3%	0.22 [0.01, 4.35]		
Total (95% CI)		513		632	100.0%	0.53 [0.31, 0.91]		
Total events	15		43					201
Heterogeneity: Tau ² = 0	0.00; Chi ² =	2.42, df	= 6 (P =	0.88); 1	² = 0%			
Test for overall effect: Z = 2.30 (P = 0.02)						Fav	0.01 0.1 vours Extended P/I	1 10 100 D Favours EPP

	Extende	d P/D	EPP			Risk Ratio	Risk	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	iom, 95% Cl
Lang-Lazdunski 2012	15	54	15	22	24.7%	0.41 [0.24, 0.68]		
Nakas 2012	29	67	67	98	36.5%	0.63 [0.47, 0.86]		
Okada 2008	5	34	15	31	12.5%	0.30 [0.13, 0.74]		
Ploenes 2013	2	23	12	25	6.0%	0.18 [0.05, 0.72]		
Rena 2012	9	37	25	40	20.3%	0.39 [0.21, 0.72]		
Total (95% CI)		215		216	100.0%	0.44 [0.30, 0.63]	•	
Total events	60		134					20 03
Heterogeneity: Tau ² = ().07; Chi ² =	7.10, df	= 4 (P =	0.13); I	² = 44%			
Test for overall effect: Z = 4.49 (P < 0.00001)					Fav	0.05 0.2 vours Extended P/D	1 5 20 Favours EPP	

Cao C. Lung Cancer. 2014;83:240-245.

Cao C. Lung Cancer. 2014;83:240-245.

Mesothelioma and Radical Surgery 2 (MARS 2) trial

- Ongoing
- (Extended) P/D vs no surgery
- N=264

Lim E. BMJ open. 2020;10:e038892.