

Mitral Valve Surgery

Thoracic and Cardiovascular Surgery Sejong General Hospita

- Leaflets
 - Anterior
 - Trapezoidal shape
 - More extended vertically
 - 1/3 circumference of MV (Area 75%)
 - LVOT, aorto-mitral curtain
 - Trigones

Carpentier's reconstructive valve surgery, Elsevier, 2010

Leaflets

- Posterior
 - More extended transversally
 - 2/3 circumference of MV (Area 25%)
 - Muscular parietal base of LV
- Commissures
 - Continuity between anterior and posterior leaflet
 - Small, triangular segment
 - Y shape coaptation zone

Annulus

-

•

- Atrio-valvular junction
- The hinge (leaflet motion)
- Annular fibrosus
 - Suture needles
 2mm away from the hinge
 Oriented towards the ventricle, pass through the resistant fibrous body of the annulus

Carpentier's reconstructive valve surgery, Elsevier, 2010

to the hinge Aorto-mitral curtain Posteromedial (right) trigone Atrio-valvular junction (leaflet hinge) Anterior leaflet tibrosus Atrial view

Four anatomical structures close to the annulus

- Circumflex artery
- Coronary sinus
- Bundle of His
- Noncoronary & left coronary aortic cusps

• Papillary muscle

- Posteromedial
- Anterolateral

Chordae tendinae

- Basal (or tertiary) chordae
 - attached to the base of the posterior and commissural leaflets or to the annulus
- Intermediary (or secondary) chordae
 - attached to the ventricular side of the leaflets
- Marginal (or primary) chordae
 - attached to the margin of the leaflets

Mitral stenosis

Mitral stenosis

- Etiology
 - Rheumatic
 - Degenerative (calcification)
 - Congenital
 - Carcinoid
 - Neoplasm
- Characteristic rheumatic changes
 - A Commissural fusion
 - "Fish-mouth" appearance of the MV orifice
 - Leaflet thickening, especially at the free edges

Stages of MS

Stage	Definition	Valve Anatomy	Valve Hemodynamics	Hemodynamic Consequences	Symptoms
A	At risk of MS	 Mild valve doming during diastole 	Normal transmitral flow velocity	None	None
В	Progressive MS	 Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets Planimetered mitral valve area >1.5 cm² 	 Increased transmitral flow velocities Mitral valve area >1.5 cm² Diastolic pressure half-time <150 ms 	 Mild to moderate LA enlargement Normal pulmonary pressure at rest 	None
С	Asymptomatic severe MS	 Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets Planimetered mitral valve area ≤1.5 cm² 	 Mitral valve area ≤1.5 cm² Diastolic pressure half- time ≥150 ms 	 Severe LA enlargement Elevated PASP >50 mm Hg 	None
D	Symptomatic severe MS	 Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets Planimetered mitral valve area ≤1.5 cm² 	 Mitral valve area ≤1.5 cm² Diastolic pressure half- time ≥150 ms 	 Severe LA enlargement Elevated PASP >50 mm Hg 	 Decreased exercise tolerance Exertional dyspnea

The transmitral mean pressure gradient should be obtained to further determine the hemodynamic effect of the MS and is usually >5 mm Hg to 10 mm Hg in severe MS; however, because of the variability of the mean pressure gradient with heart rate and forward flow, it has not been included in the criteria for severity.

LA indicates left atrial; MS, mitral stenosis; and PASP, pulmonary artery systolic pressure.

Catherine M. Otto, Rick A. Nishimura et al. JACC. 2021

Interventions for MS

Catherine M. Otto, Rick A. Nishimura et al. JACC. 2021

Mitral regurgitation

Pathophysiological Triad²

Etiology—The cause of the disease
↓
Lesions—Result from the disease
↓
Dysfunction—Result from the lesions

Application	of the	Patho	physiological	Triad	in
Degenerativ	e Mitra	I Valve	Diseases		

Etiology	Barlow's disease instead of myxoid, myxomatous, billowing, floppy valves and mitral valve prolapse
	<i>Fibroelastic deficiency</i> should be recognized as a cause of degenerative valve disease (see Ch. 26)
Lesions	<i>Leaflet billowing</i> instead of <i>stretching, distension, ballooning</i> and <i>overshooting leaflet</i>
	Chordae elongation instead of chordae stretching or distension
Dysfunctions	<i>Leaflet prolapse</i> instead of <i>flail,</i> partial flail, overshooting leaflet, floppy valve, mitral valve prolapse etc.

Etiology of Valvular Diseases

Primary Valve Diseases

- · Congenital malformations
- Inflammatory diseases Rheumatic Lupus erythematosus
- Valve sclerosis
- Degenerative diseases Barlow's disease Marfan's disease
- Fibroelastic deficiency
- Bacterial endocarditis*
- Valvular or annular calcification*
- Trauma
- Valvular tumors

Secondary to Myocardial Diseases

- Ischemic cardiomyopathy
- · Dilated cardiomyopathy
- Hypertrophic obstructive cardiomyopathy
- Myocardial sarcoidosis
- · Endomyocardial fibrosis
- Myocardial tumors

Aitral Valve Lesions	
Annulus:	Dilatation Abscess Calcification
.eaflets:	Excess leaflet tissue Thickening Vegetations Abscess, perforation Tear Calcification
Commissures:	Fusion Thickening Calcification
Papillary muscles:	Rupture Elongation Calcification
/entricle:	Infarction Fibrosis Dilatation Aneurysm Myocarditis Calcification

Valve Dysfunctions and Corresponding Lesions

Valve Dysfunctions	Lesions
Type I: Normal leaflet motion	Annular dilatation Leaflet perforation Vegetation
Type II: Leaflet prolapse	Leaflet rupture, distension Commissure detachment
Type Illa : Restricted leaflet closure and opening	Leaflet thickening Commissure fusion Calcification
Type IIIb: Restricted leaflet closure only	Sino-tubular dilatation

Stages of Chronic primary MR

Stage	Definition	Valve Anatomy	Valve Hemodynamics *	Hemodynamic Consequences	Symptoms
A	At risk of MR	 Mild mitral valve prolapse with normal coaptation Mild valve thickening and leaflet restriction 	 No MR jet or small central jet area <20% LA on Doppler Small vena contracta <0.3 cm 	None	None
В	Progressive MR	 Moderate to severe mitral valve prolapse with normal coaptation Rheumatic valve changes with leaflet restriction and loss of central coaptation Prior IE 	 Central jet MR 20%-40% LA or late systolic eccentric jet MR Vena contracta <0.7 cm Regurgitant volume <60 mL Regurgitant fraction <50% ERO <0.40 cm² Angiographic grade 1+ to 2+ 	 Mild LA enlargement No LV enlargement Normal pulmonary pressure 	None
С	Asymptomatic severe MR	 Severe mitral valve prolapse with loss of coaptation or flail leaflet Rheumatic valve changes with leaflet restriction and loss of central coaptation Prior IE Thickening of leaflets with radiation heart disease 	 f ■ Central jet MR >40% LA or holosystolic eccentric jet MR Vena contracta ≥0.7 cm Regurgitant volume ≥60 mL Regurgitant fraction ≥50% ERO ≥0.40 cm² Angiographic grade 3+ to 4+ 	 Moderate or severe LA enlargement LV enlargement Pulmonary hypertension may be present at rest or with exercise C1: LVEF >60% and LVESD <40 mm C2: LVEF ≤60% and/or LVESD ≥40 mm 	None
D	Symptomatic severe MR	 Severe mitral valve prolapse with loss of coaptation or flail leaflet Rheumatic valve changes with leaflet restriction and loss of central coaptation Prior IE Thickening of leaflets with radiation heart disease 	 Central jet MR >40% LA or holosystolic eccentric jet MR Vena contracta ≥0.7 cm Regurgitant volume ≥60 mL Regurgitant fraction ≥50% ERO ≥0.40 cm² Angiographic grade 3+ to 4+ 	 Moderate or severe LA enlargement LV enlargement Pulmonary hypertension present 	 Decreased exercise tolerance Exertional dyspnea

*Several valve hemodynamic criteria are provided for assessment of MR severity, but not all criteria for each category will be present in each patient. Categorization of MR severity as mild, moderate, or severe depends on data quality and integration of these parameters in conjunction with other clinical evidence.

ERO indicates effective regurgitant orifice; IE, infective endocarditis; LA, left atrium/atrial; LV, left ventricular; LVEF, left ventricular ejection fraction; LVESD; left ventricular endsystolic dimension; and MR, mitral regurgitation. Catherine M. Otto, Rick A. Nishimura et al. JACC. 2021

Stages of Secondary MR

Stage	Definition	Valve Anatomy	Valve Hemodynamics*	Associated Cardiac Findings	Symptoms
A	At risk of MR	 Normal valve leaflets, chords, and annulus in a patient with CAD or cardiomyopathy 	 No MR jet or small central jet area <20% LA on Doppler Small vena contracta <0.30 cm 	 Normal or mildly dilated LV size with fixed (infarction) or induc- ible (ischemia) regional wall motion abnormalities Primary myocardial disease with LV dilation and systolic dysfunction 	 Symptoms attributable to coronary ischemia or HF may be present that respond to revascularization and appropriate medical therapy
В	Progressive MR	 Regional wall motion abnormalities with mild tethering of mitral leaflet Annular dilation with mild loss of central coaptation of the mitral leaflets 	 ERO <0.40 cm²† Regurgitant volume <60 mL Regurgitant fraction <50% 	 Regional wall motion abnormal- ities with reduced LV systolic function LV dilation and systolic dysfunction attributable to pri- mary myocardial disease 	 Symptoms attributable to coronary ischemia or HF may be present that respond to revascularization and appropriate medical therapy
С	Asymptomatic severe MR	 Regional wall motion abnormalities and/or LV dilation with severe tethering of mitral leaflet Annular dilation with severe loss of central coaptation of the mitral leaflets 	 ERO ≥0.40 cm²† Regurgitant volume ≥60 mL ‡ Regurgitant fraction ≥50% 	 Regional wall motion abnormal- ities with reduced LV systolic function LV dilation and systolic dysfunction attributable to pri- mary myocardial disease 	 Symptoms attributable to coronary ischemia or HF may be present that respond to revascularization and appropriate medical therapy
D	Symptomatic severe MR	 Regional wall motion abnormalities and/or LV dilation with severe tethering of mitral leaflet Annular dilation with severe loss of central coaptation of the mitral leaflets 	 ERO ≥0.40 cm²† Regurgitant volume ≥60 mL ‡ Regurgitant fraction ≥50% 	 Regional wall motion abnormal- ities with reduced LV systolic function LV dilation and systolic dysfunction attributable to pri- mary myocardial disease 	 HF symptoms attributable to MR persist even after revascularization and optimization of medical therapy Decreased exercise tolerance Exertional dyspnea

*Several valve hemodynamic criteria are provided for assessment of MR severity, but not all criteria for each category will be present in each patient. Categorization of MR severity as mild, moderate, or severe depends on data quality and integration of these parameters in conjunction with other clinical evidence.

The measurement of the proximal isovelocity surface area by 2D TTE in patients with secondary MR underestimates the true ERO because of the crescentic shape of the proximal convergence.

#May be lower in low-flow states.

2D indicates 2-dimensional; CAD, coronary artery disease; ERO, effective regurgitant orifice; HF, heart failure; LA, left atrium; LV, left ventricular; MR, mitral regurgitation; and TTE, transthoracic echocardiogram. Catherine M. Otto, Rick A. Nishimura et al. JACC. 2021

Intervention for Primary chronic MR

Catherine M. Otto, Rick A. Nishimura et al. JACC. 2021

Intervention for Secondary MR

Catherine M. Otto, Rick A. Nishimura et al. JACC. 2021

Mitral valve operations

MV exposure

Traditional LA approach (Waterston's groove)

Trans-septal LA approach

MV analysis

- Reference point
 - Free edge of P1
- Segmental functional analysis
 - ➡ the "Fil d'Ariane" of mitral valve reconstructive surgery

Carpentier's reconstructive valve surgery, Elsevier, 2010

세종병원 SEJONG HOSPITAL

SE

• Artificial chordae

JONG 세종병원

f

Commissuroplasty

Koprivanac et al. Ann Cardiothorac Surg 2017

Mitral commissurotomy

Mitral valve replacement

Kirklin Barratt-Boyes - Cardiac Surgery, 4th edition, Elsevier, 2013

Mitral valve replacement

• Chordae-sparing MVR

Reoperations

McClure et al. J Thorac Cardiovasc Surg 2013

Levels of ascent in MICS

Level 1	Direct vision	Limited (10–12 cm) incisions
Level 2	Direct vision/video assisted	Mini (4–6 cm) incisions
Level 3	Video directed and robot assisted	Micro (1.2–4 cm) incisions
Level 4	Robotic (computer telemanipulation)	Port (<1.2 cm) incisions

FIGURE 1: Level 2 minimally invasive approach (4–6 cm incision).

Ritwick et al. Minim Invasive Surg 2013

Mi	Acquired Cardiovascular	Disease Minimal Access Versus Sternotomy for	Check for updates
Exp	Early and late $\frac{M}{2}$	Two Hundred Forty Minimally Invasive Mitral Popair:	
Euge Greg Alfre F. Gr ^{Division} School	An eleven-yea R. Scott McClure, MD, Si R. Morton Bolman, III, M Objective: This s evaluates long-ter	Iiii Operations Through Right Minithoracotomy D, Ive Tayfun Aybek, MD, Selami Dogan, MD, Petar S. Risteski, MD, Andreas Zierer, MD, D, Ive Thomas Wittlinger, MD, Gerhard Wimmer-Greinecker, MD, PhD, and D, Ive Anton Moritz, MD, PhD MD Department for Thoracic and Cardiovascular Surgery, Johann Wolfgang Goethe University, Frankfurt/Main, Germany D,	elini, FRCS, rch, Cotignola, RA, ly; Department of
Back experie tions of mortal data. Metl had mi Noven dures i bypass isolate ments) 30.1% cardiao 79.0% endo-oo jugula anterio posteri Bacc	regurgitation and Methods: Betwee patients (mean fo remaining 707 pa was $60\% \pm 10^{\circ}$ (24%), right thor the left atrium in (96%) of 707 rep Results: There w (20%), reoperation wound infection (required blood tra- repairs necessitation dom from reopera- up. A total of 236 0.47–11.09). Mea- ejection fraction or rence of moderator Conclusion: Min	Background. This study reports of our 7-year experi- ence with minimally invasive mitral valve operations using the transthoracic clamp technique, reviewing mor- bidity and mortality as well as echocardiographic fol- low-up results.and 8.1 days, respectively. Mean follow-up was 30 ± 18 months (range, 3 to 76). Echocardiographic follow-up doue meted persistently competent valve function in all but 6 patients who had grade III regurgitation. Five of them underwent mitral valve re-reconstruction and 1 underwent transplantation. At 76 months, freedom from nontrivial recurrent mitral regurgitation and reoperation were 92.3% and 96.2%, respectively. Actuarial survival at tracic wounds were free from infection in all patients. Conclusions. This study demonstrates that the direct vision, transthoracic clamp technique for minimally in- vasive mitral valve surgery is reproducible with low mortality and morbidity rates. It results in excellent cosmesis and abolished the risk of thoracic wound infec- tion. Results are comparable to midterm outcomes of conventional operations.alve repai olated valva as 91% \pm nally invasi to a seconstruction and 1 e 0.30. E to a seconstruction and the direct or seconstructions were were 92.3% and 96.2%, respectively. Actuarial survival at tracic wounds were free from infection in all patients. Conclusions. This study demonstrates that the direct vasive mitral valve surgery is reproducible with low mortality and morbidity rates. It results in excellent conventional operations. (Ann Thorac Surg 2006/81:1618-24)alve repai olated valva as 91% \pm	r plus a ve repair, : 2% for sive $(p = 0)$ ised to calculate or severe tomy and ight-year ised to calculate 905 patients (654 y) with a mean 138) were meta- as 86% \pm vitral valve regur- mally invasive term out- are excel- rnotomy. of short- to mitral Surgeons 2002;109:737-44)

Totally endoscopic mitral valve surgery: early experience in 188 patients

Yi Chen, Ling-chen Huang^{*}, Dao-zhong Chen, Liang-wan Chen, Zi-he Zheng and Xiao-fu Dai^{*}

Abstract

Introduction: Totally endoscopic technique has been widely used in cardiac surgery, and minimally invasive totally endoscopic mitral valve surgery has been developed as an alternative to median sternotomy for many patients with mitral valve disease. In this study, we describe our experience about a modified minimally invasive totally endoscopic mitral valve surgery and reported the preliminary results of totally endoscopic mitral valve surgery. The aim of this retrospective study is to evaluate the results of totally endoscopic technique in mitral valve surgery.

Material and methods: We retrospectively reviewed the profiles of 188 patients who were treated for mitral valve disease by modified totally endoscopic mitral valve surgery at our institution between January 2019 and December 2020. The procedure was performed under endoscopic right minithoracotomy and with femoro-femoral cannulation using the single two-stage venous cannula.

Results: A total of 188 patients underwent total endoscopic mitral valve surgery. Fifty-six patients had concomitant tricuspid valvuloplasty, 11 patients underwent concomitant ablation of atrial fibrillation and atrial septal defect repair was performed in three patients. Only one patient postoperatively died of multi-organ failure. Two patients were converted to median sternotomy. Except for one patient underwent operation to stop the bleeding from the incision site, no other serious complications nor reintervention occurred during the follow-up period.

Conclusions: The modified totally endoscopic mitral valve surgery performed at our institution is technically feasible and safe with the same efficacy as reported studies.

Keywords: Minimally invasive, Totally endoscopic, Mitral valve surgery

Fig. 4 Mitral valve surgery using the totally endoscopic technique

Chen et al. J Cardiothorac Surg 2021

3D totally endoscopic mitral valve repair

Kim and Yoo J Thorac Dis 2020

Robotic mitral valve repair

Chitwood WR Jr. Ann Cardiothorac Surg 2016

- Isolated or combined mitral valve procedure

Contraindications

- Severe annular calcification
- Concomitant CABG
- Reduced ejection fraction
- Combined aortic surgery
- Obesity
- Chest wall deformities
- Intolerable for single lung ventilation
- Previous right chest surgery
- High pulmonary artery pressure

Transcatheter MV intervention

Transcatheter edge-to-edge repair (TEER)

MitraClip

- First implantation: 2003
- FDA approve
 - Primary MR: 2013
 - Secondary MR: 2019
- More than 100,000 pts

Davidson LJ and Davidson CJ JAMA 2021

Transcatheter edge-to-edge repair (TEER)

- Multicenter RCT
- 37 centers
- Primary MR
- 184 MitralClip vs. 95 surgery

C. Freedom From MV Surgery or Reoperation

D. Landmark Analysis of Freedom From MV Surgery or Reoperation Beyond 6 Months

Feldman et al. JACC 2015

Transcatheter edge-to-edge repair (TEER)

Prima	ry MR		
COR	LOE	RECOMMENDATIONS	
2a	B-NR	6. In severely and transcatheter edge-to-edge repair (TEER) is reasonable if mitral value anatomy is fav	orable
		for the repair procedure and patient life expectancy is at least 1 year (17,18).	orable

Se	co	nd	an	7	М	R
して	υU	IIЧ	aiv	V I	VI	1 🔪

COR	LOE	RECOMMENDATIONS
2a	B-R	1. In patients with who have persistent symptoms (NYHA class II, III, or IV) while on optimal GDMT for HF (Stage D), TEER is reasonable
		in patients with appropriate anatomy as defined on TEE and with LVEF (1-8).

Transcatheter mitral valve repair

Scotti et al. Vessel Plus 2021

Transcatheter mitral valve replacement

FIGURE 4. TMVR systems in clinical evaluation (a) FORTIS.¹²³ (b) EVOQUE TMVR System.⁶⁸ (c) Sapien M3 System.¹⁵³ (d) Cardiovalve TMVR System.⁵⁹ (e) Tiara TMVR System.⁹ (f) Tendyne Mitral Valve System.¹²²

Goode et al. Cardiovasc Eng Technol 2020

세종병원 SEJONG HOSPITAL

