

Jun Hee Lee

Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital

Today's agenda

Pneumothorax: Introduction

기흥 Pneumothorax

공기주머니에 해당하는 폐에 구멍이 생겨 공기가 새고 이로 인해 흉막강 내에 공기나 가스가 고이게 되는 질환

Pneumothorax : Epidemiology (KOREA)

AGE

2020~2022 Age distribution among pneumothorax patients

SEX

> Two peaks of incidence

- Between 20-30 years: Primary spontaneous PNX (PSP)
- Between 60-70 years: Secondary spontaneous PNX (SSP)

> Male >> female

- Smoking prevalence
- Anatomy?, hormonal differences?. physical activity?

Pneumothorax: Clinical presentation

- decreased breath sounds
- hyperresonance
- decreased chest movement

Pneumothorax: Diagnostic imaging

Chest X-ray

- visible pleural line
- absent lung markings peripherally

CT chest

- more sensitive
- detects small pneumothorax

• Barcode/stratosphere sign

Pneumothorax: Diagnosis

Pneumothorax: Diagnosis

Ultrasound

higher sensitivity than a supine chest x-ray for the identification of pneumothorax after blunt trauma and can be used at point-of-care.

Pneumothorax : Diagnosis

Ultrasound

Pneumothorax : Radiologic differential diagnosis 을기로운 1년차생활*

Bulla mimicking pneumothorax

Skin fold mimicking pneumothorax

Depends on type, size, symptoms, underlying disease

Observation

- small
- asymptomatic
- stable primary spontaneous pneumothorax

Oxygen therapy

accelerates resorption

Needle aspiration

Tube thoracostomy

Surgery

- VATS
- thoracotomy
- pleurodesis

Pneumothorax: Treatment

Ref.: Medical Management of the Thoracic Surgery Patient

Pneumothorax: Treatment

Size of pneumothorax

- a = apex to cupola distance American Guidelines
- b = interpleural distance at level of the hilum British Guidelines

a:

• The *American College of Chest Physicians* apex-cupola distance > 3 cm

b:

• The *British Thoracic Society* interpleural distance at the hilum >2 cm

- Belgian guidelines
 dehiscence over the entire length of
 the lateral chest wall
- Light's index (see image below)
 calculative approach that involves the diameter of the collapsed lung (L) and the diameter of the inner hemithorax at the hilum (H) with estimated pneumothorax size = (1 L3/H3) x 100 of ≥20% defined as large

Indication for tube thoracostomy

- Patients with tension pneumothorax (rare in PSP)
- Patients with severe dyspnea
- Patients who are clinically stable and fail observation or aspiration or in whom aspiration cannot be performed due to lack of expertise
- Patients with bilateral pneumothorax
- Patients with complex loculated pneumothorax (unusual in PSP)
- Patients with concurrent hemothorax
- Patients with a pleural effusion necessitating drainage

Indications for Surgery in Primary Spontaneous Pneumothorax

First episode

- Prolonged air leak
- Non–re-expansion of the lung
- Bilateral pneumothorax
- Hemothorax
- Tension pneumothorax
- Complete pneumothorax
- Occupational hazard
- Absence of medical facilities in isolated areas
- Associated single large bulla
- Psychological

Second episode

- Ipsilateral recurrence
- Contralateral recurrence

Emergent Thoracostomy?

Tension pneumothorax

History taking, Risk of re-expansion edema

immediate needle decompression

chest tube

Pneumothorax for pregnant women

multidisciplinary management, avoid teratogenic drugs

Ventilated patients

high risk of barotrauma, need tube thoracostomy

Pediatric patients

Emergency Vulnerable Call a pediatrician

Hemopneumothorax

History

no trauma, recurrent pneumothorax

Physical exam

conjunctival pallor

Drainage color

Bloody

Treatment

NPO Surgery may be required in some cases

Air travel

- Air travel poses risks for patients with pneumothorax due to cabin pressure changes.
- Proper timing after treatment is critical to avoid recurrence or complications.

British Thoracic Society (BTS, 2022)

Wait ≥7 days after complete radiographic resolution.

After thoracic surgery, Patients, professionals and their carers should be aware that this may result in a delay of 4 weeks for non-essential air travel and 2 weeks for essential air travel.

Open pneumothorax

Pleural effusion: Introduction

용수 Pleural effusion

폐름 감싸는 흉막 공간에 체액이 비정상적으로 고이게 되는 질환

Pleural effusion: Pleural fluid analysis

Lights criteria

	TRANSUDATE	EXUDATE
Pleural : Serum protein	< 0.5	> 0.5
Pleural : Serum LDH	< 0.6	> 0.6
Pleural fluid LDH	< 2/3 ULN serum LDH	> 2/3 ULN serum LDH

Pleural effusion: Pleural fluid analysis

Transudates	Exudates	
Common	Common	
Congestive cardiac failure	Malignancy	
Liver cirrhosis	Pleural infection	
 Hypoalbuminaemia 	Pulmonary embolism	
 Nephrotic syndrome 	Autoimmune pleuritis	
Less common	Less common	
 Nephrotic syndrome 	Drugs	
 Mitral stenosis 	Lymphatic disorders	
 Peritoneal dialysis 	Meigs syndrome	
 Chronic hypothyroidism 	Post-coronary artery bypass graft	
 Constrictive pericarditis 	Benign asbestos related pleural effusion	

Pleural effusion: Pleural fluid analysis

Ref.: Harrison's mannual

Pleural effusion: Treatment

Pleural effusion: Treatment

Esophageal perforation

Patients who receive treatment within 24 hours have a lower mortality rate (around 10% to 25%), while those treated after 24 hours see the rate more than double, reaching 40% to 60%.

HD 1

Chest pain, CAG: normal

Dyspnea

History

Chest pain

Physical exam

Decreased sound

Drainage color

foul-smelling fluid

Treatment

NPO, Antiniotics Endoscopic stent insertion

Effusion vs. Atelectasis

Feature	Pleural Effusion	Atelectasis
Opacity pattern	Homogeneous increased opacity, typically showing a m eniscus sign (curved upper margin)	Triangular-shaped opacity converging toward the hilum
Location	Usually starts in the lower zones (costophrenic angle bl unting), gravity-dependent	Confined to a specific lobe or segment
Volume change	No or minimal volume loss	Marked volume loss (narrowing of interco stal spaces, reduced hemithorax size)
Mediastinal shift	In massive effusion, shift of mediastinum/heart to the opposite side (push)	Shift of mediastinum/heart toward the aff ected side (pull)
Other signs	Free fluid layering seen on decubitus film	Fissure displacement, air bronchogram (especially in segmental atelectasis)

Effusion vs. Atelectasis

