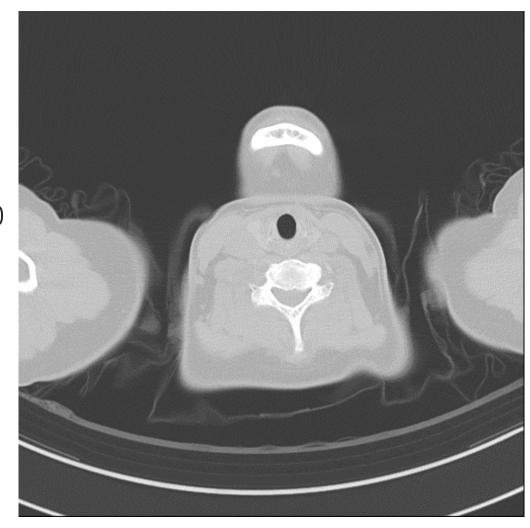
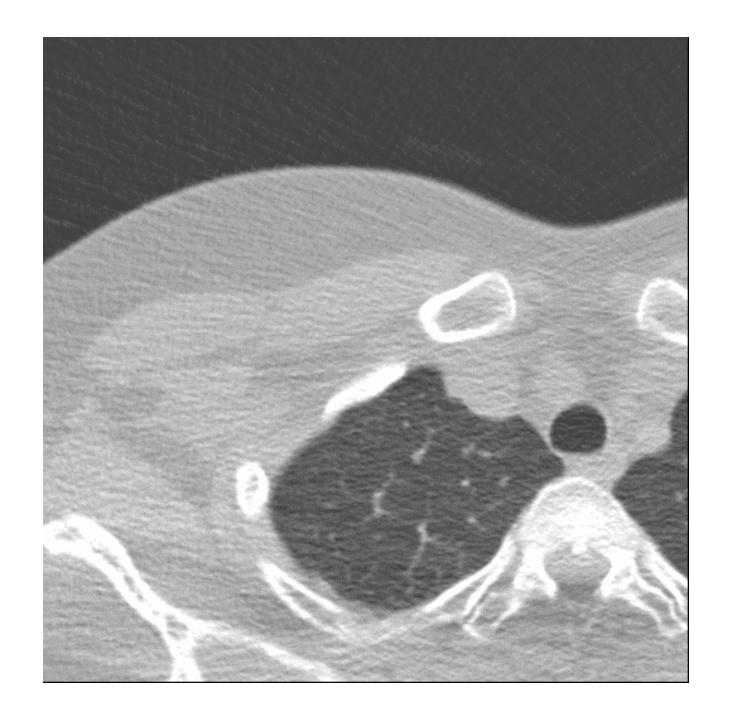
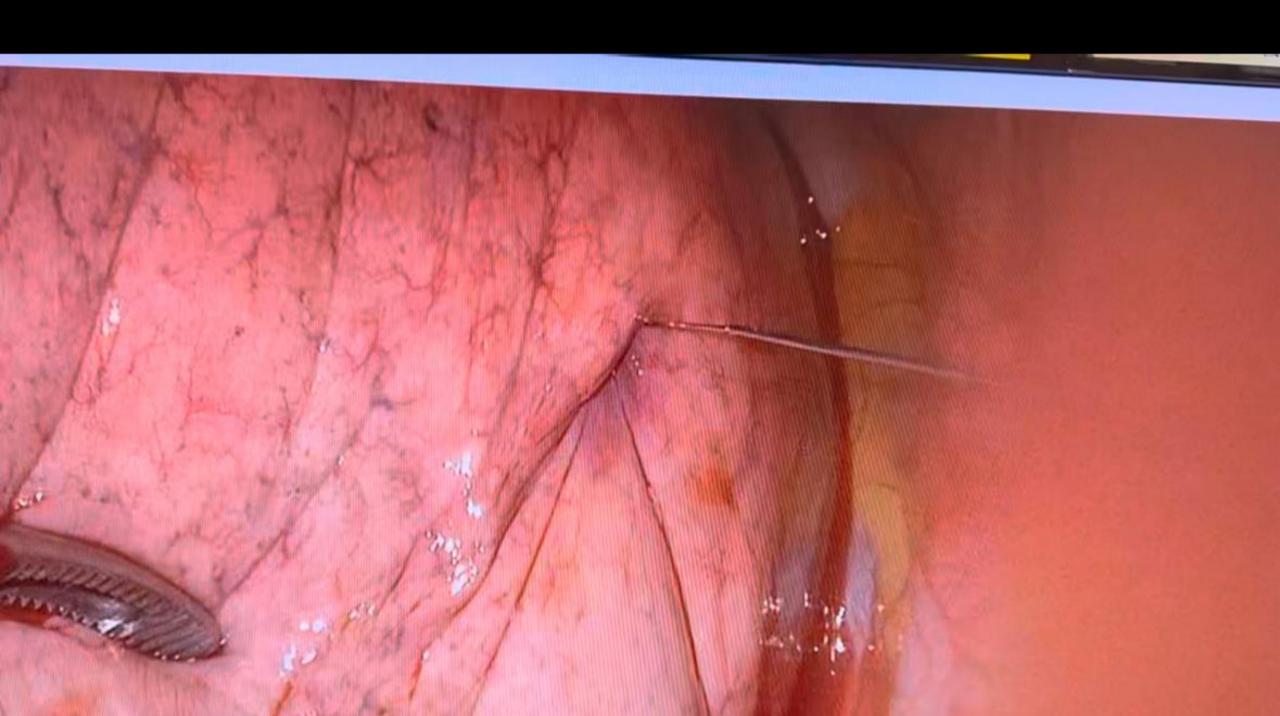
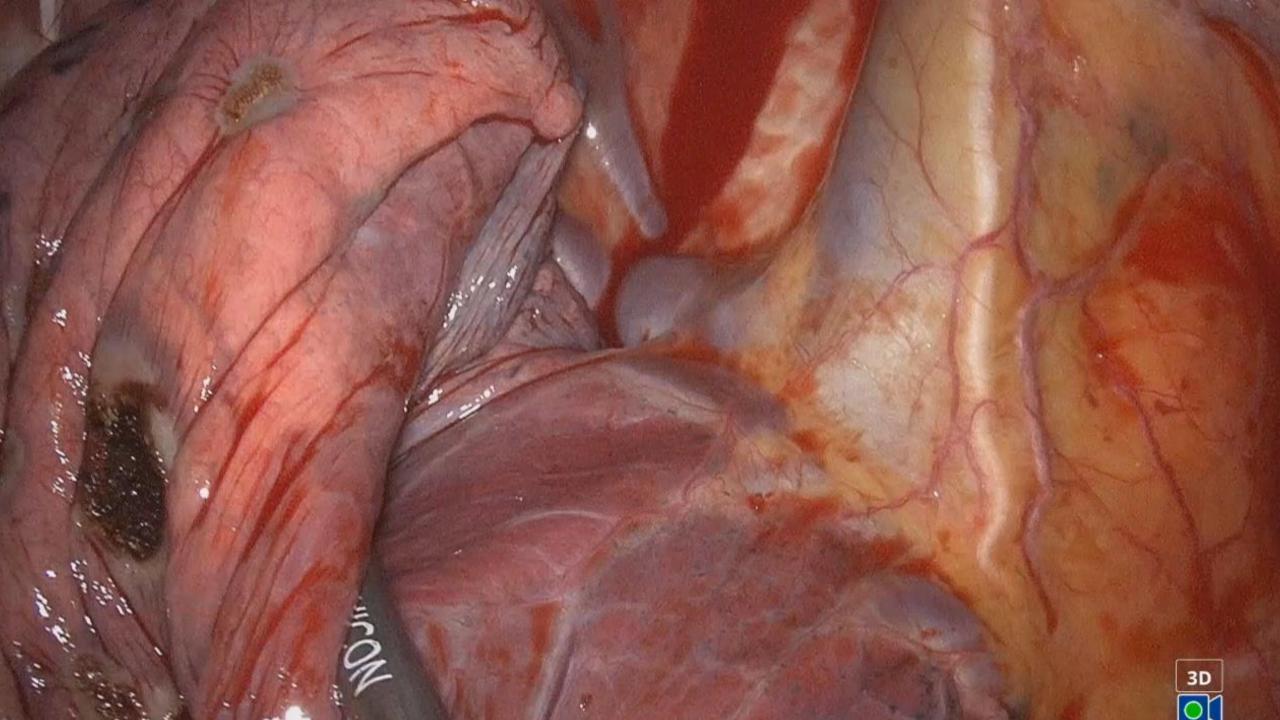
Sublobar resection and localization


분당 서울대학교병원 정우현

엄 0화 49/F


Synchronous multiple primary lung cancer


- Lung cancer, pGGN, MIA, RUL, cT1aN0M0
- Lung cancer, mGGN(30%), MIA, RML, cT1aN0M0


r/o myomas
asthma, BDR+
HTN

CT-guided localization

1. Sublobar resection

요익

구역절제술의 indication

- ▶ 폐엽절제술이 여전히 표준 치료
- ▶ 폐기능 저하 환자 및 다발성 폐결절 환자에서 중요한 대안

성공의 핵심 요소

Sufficient safety margin

서론 및 핵심 포인트

구역 절제술의 Indication

구역절제술은 <mark>선택된</mark> 환자군에서 폐엽절제술과 대등한 종양학적 결과를 보임

- ▶ 조기 폐암: 구역절제술은 만족스러운 종양학적 결과 달성
- ▶ 암 수술 시 필수: 구역 림프절의 동결절편 검사 (완전 절제 확인)
- ▶ 제한된 기관지확장증: 구역절제술이 선택적 시술

구역절제술의 일반 원칙

기술적 고려사항

- ▶ Safety margin을 확보하는 것이 가장 중요
- ▶ 기관지-동맥 관계의 3차원적 해부학 지식 필수
- ▶ 수술 전 CT로 해부학적 구조 확인이 필수

*

수술 원칙

수술의 주요 절차 및 원칙

• 종양의 safety margin을 확보하는 것이 가장 중요

• 폐의 한 분절(segment)을 정확히 구분할 때 가장 신뢰할 수 있는 해부학적 기준은 각 분절에 해당하는 기관지

• 수술 중에는 폐를 완전히 mobilize하여 노출을 극대화해야 함

• 구역간 정맥(intersegmental vein)은 서로 인접한 두 분절의 경계를 이루고, 인접 분절 배액을 담당하므로, 이 정맥을 보존하는 것이 합병증 예방에 중요

합병증 및 관리

주요 합병증

- 지속적 공기 누출
 - 10%
 - 대부분 자연 치유 : 건강한 환자, 대부분 작은 leak
- Congestion
 - Vein injury, torsion
 - Intersegmental vein을 saving하는 것이 중요
 - Torsion이 심할 때는 fixation

2. Localization

Localization 재료들

□ 금속 재료

- •Hook-wire: 가장 오래됨, 통증·이탈 위험
- •Microcoil: 이탈 적고 안전성个, 위치 확인 어려움 시 CT 필요. **색전증 위험**
- •Four-hook needle / Memory coil: 흉막 외부에 마커 남겨 빠른 수술 중 확인 가능

% 염료

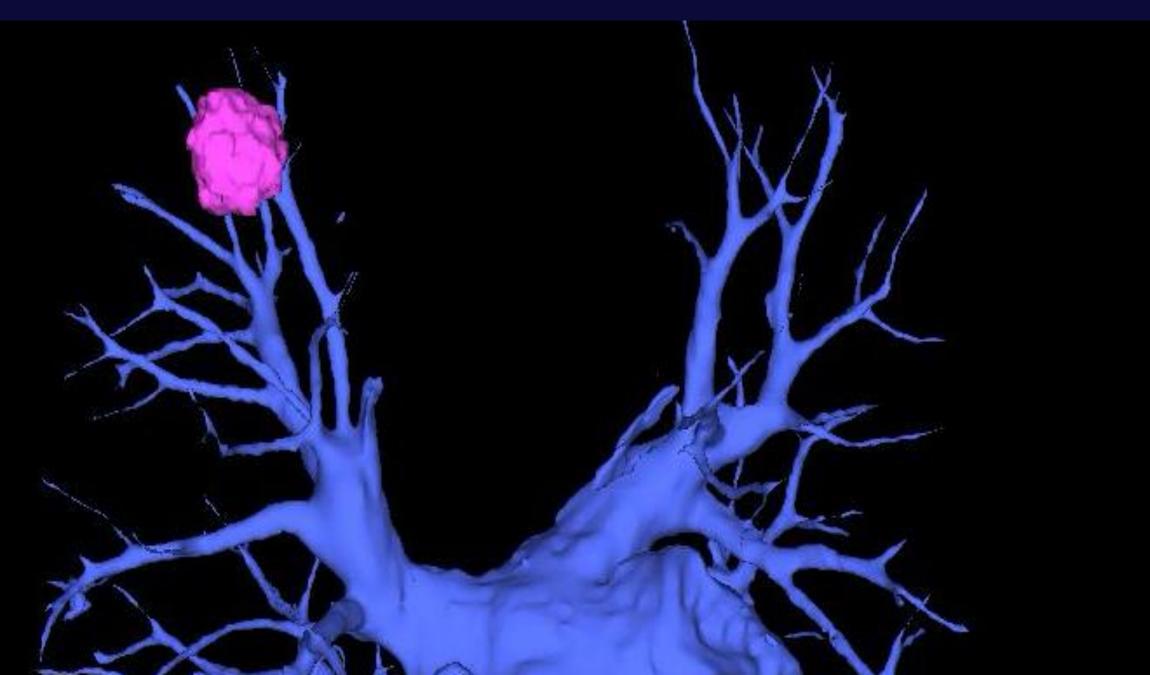
- •Methylene Blue: 확산 빠름, 탄분 침착 시 시야 불량 색전증 위험
- •ICG (Indocyanine Green): 형광 내시경 필요, 조직 침투력个, 수술 중 위치 확인 가능 **색전증 위험**

□ 생체접착제 (Bio-glue)

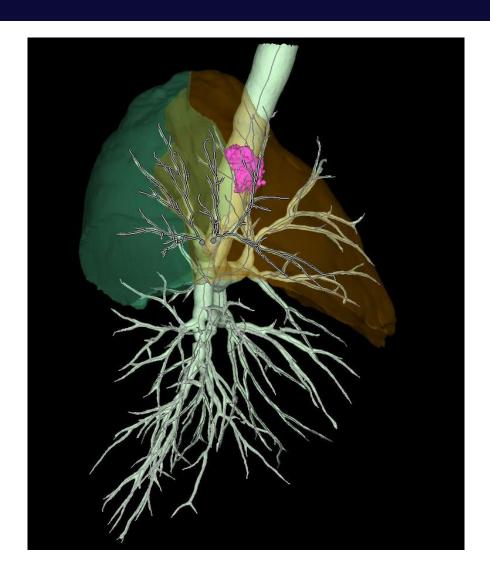
- •빠른 응고로 결절 형성, 수술 간격 여유 있음
- •단점: 자극성 기침, 주사기 응고 가능성

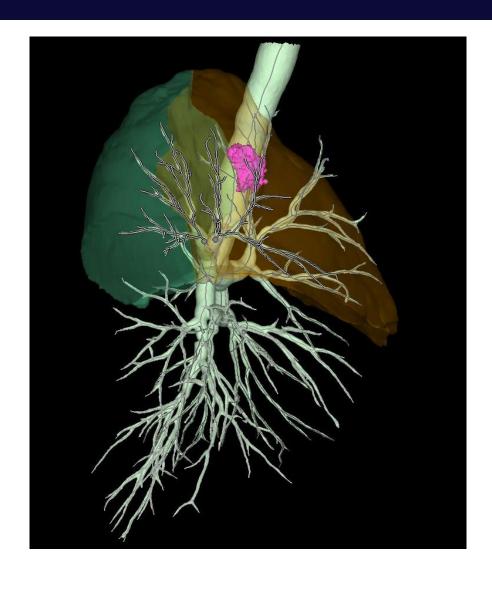
□조영제

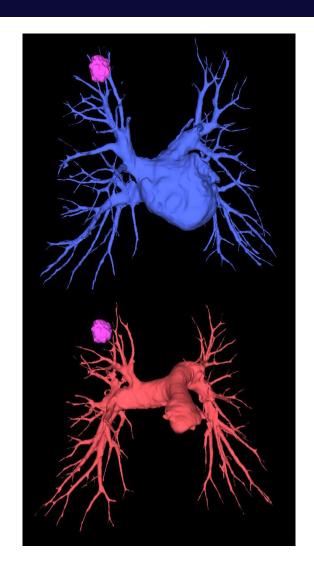
•lodine oil: 조직 내 잔류 시간 길지만 **색전증 위험**

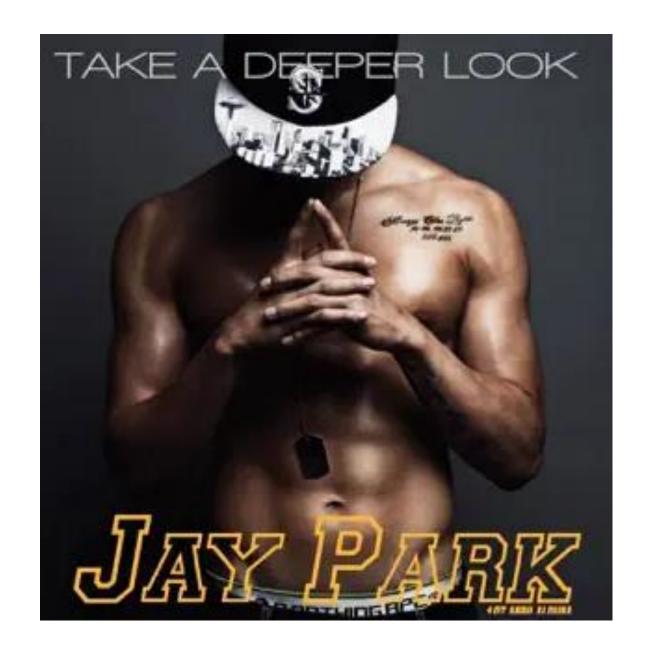

∞ 복합 재료

•다양한 재료 조합으로 성공률 향상 (예: ICG+조영제, Hook-wire+염료 등)


Dye vs. Wire


항목	항목 Dye	
장점	- 시술 간단하고 빠름 - 환자 불편감 적음 - 이물감 거의 없음	
단점	- 시간이 지나면 색이 퍼지거나 소실될 수 <mark>있음</mark> - 정확한 깊이 측정 어려움	- 환자에게 불편감 유발 - wire dislodgement(이탈) 위험 - 기흉 등의 합병증 가능
수술까지 허용 시간	짧음 (3시간 이내)	비교적 길 수 있음 (몇 시간~1일 가능)
시야 확보	경우에 따라 번짐으로 시야 방해 가능	물리적으로 위치를 표시하므로 비교적 명확한 시야 확보
합병증	드물게 알레르기 반응, 색 번짐	기흉, 출혈, 이탈 등 상대적으로 더 흔함
		깊거나 위치 확인이 어려운 병변, 수술 대기 시간이 있는 경우 적합





3. Take a deeper look

폐기능 보존 효과

시기	Segmentectomy	Lobectomy	차이
2개월 내 FEV1 감소	평균 18% (9-24%)	평균 25% (17-29%)	7% 보존
1년 후 FEV1 감소	평균 5% (2-7%)	평균 11% (8-13%)	6% 보존

핵심: Sublobar resection은 단기 및 장기적으로 유의미한 폐기능 보존 효과를 보임

특히 고위험 환자에서 이러한 차이는 임상적으로 매우 중요함

환자 선택 기준

적응증

고위험 환자

- 예측 술후 FEV1 <40%
- DLCO <40% predicted
- 75세 이상 고령
- 중증 심폐 동반질환
- Lobectomy 불가능

상대적 금기증

- 중심부 종양
- N1 또는 N2 림프절 전이
- 충분한 절제연 확보 불가능

정상 위험군

- 종양 크기 ≤2cm
- 말초부 위치
- Clinical Stage IA
- GGO 우세 병변
- 충분한 절제연 가능

Oncologic indication

- Indication : Minimally invasive
 - MIA의 경우 sublobar resection 후 생존율 100%
- What is minimally invasive?
 - MIA : solid component 5mm 이하, no pathologic invasiveness (lymphatic, vascular, STAS, and poorly differentiated)
 - 2cm?

Variable	≤2cm (n=701)	2-3cm (n=569)
Lymphatic invasion	79/701 (11.3%)	128/569 (22.5%)
Vascular invasion	34/701 (4.9%)	50/569 (8.8%)
STAS	164/701 (23.4%)	197/569 (34.6%)

SNUBH data

• 3cm 이하의 Early lung cancer에서 invasiveness의 most reliable indicator : SUVmax, and lymphatic invasion

수술 기법의 핵심 요소

1. 절제연 (Surgical Margins)

- 최소 <mark>1.0-1.5 cm</mark> 권장
- Margin:Tumor ratio > 1 유지
- 절제연 <1cm → 재발률 19%
- 절제연 >1cm → 재발률 8% (P=0.003)

2. 림프절 평가

- 최소 3개 N2 station 샘플링
- Hilar 및 interlobar nodes 포함
- Segmentectomy가 wedge보다 우수

3. 수술 접근법

VATS/Robot 선호: 통증↓, 합병증↓, 재원기간↓

최근 주요 RCT 결과

연구	대상	주요 결과
CALGB 140503	T1aN0 (≤2cm) 정상 위험군	DFS: Non-inferior to lobectomy 말초부 작은 종양에서 효과적
JCOG 0802	≤2cm, 말초부 정상 위험군	 5년 OS: 94.3% vs 91.1% (p=0.008) 국소재발: 10.5% vs 5.4% (p=0.002) 생존율 우수, 재발률 높음

JCOG 0802 Paradox

Segmentectomy가 lobectomy보다 국소재발률은 높지만 전체생존율은 더 우수

→ 고위험 환자에서 더욱 의미있는 결과

삶의 질 (Quality of Life)

ACOSOG Z4032 QOL Study

전반적 QOL (SF-36): 3, 12, 24개월 시점에서 유의한 감소 없음

호흡곤란 점수 (SOBQ) - 12개월 시점

川 교	10점 이상 악화	P value
Segmentectomy vs Wedge	40.5% vs 21.9%	0.03
개흥술 vs VATS	38.8% vs 20.4%	0.03

임상적 의미

- Wedge resection이 segmentectomy보다 QOL 우수
- VATS 접근이 개흉술보다 기능적 결과 우수

