Basic of Cardiopulmonary Bypass

Kyo Seon Lee

Department of Thoracic and Cardiovascular Surgery
Chonnam National University Hospital
Chonnam National University Medical School

1st Cardiopulmonary Bypass

• John Gibbon - IBM engineer

One of the most important biomedical inventions

Perfusion Systems

- Venous and arterial cannulation
- Venous reservoir
- Oxygenators
- Heat exchangers
- Pumps
- Filters and bubble traps
- Tubing and connectors
- Heparin-coated circuits
- Cardiotomy reservoir and field suction
- Venting
- Cardioplegia delivery systems
- Hemoconcentrators (Hemofiltration/ultrafiltration)
- Monitors and safety devices

Venous Reservoir

- 1~3L of blood
- Store excess blood
- Bubble trap
- Access for drugs, fluids, or blood

 To provide time for the perfusionist to act if venous drainage is sharply reduced or stopped

Oxygenators

	PPL (polypropylene)	PMP (polymethylpentene)
Structure	Microporous	Non-porous
Mechanism of gas exchange	Plasma fills pores to form functional gas- exchange surface	True diffusion
Duration of use	Short-term (hours, CPB)	Long-term (days to weeks, ECMO)
Plasma leakage	Possible	None
Volatile anesthetic transfer	Possible (advantage for CPB)	Minimal/None (IV anesthesia required)
Cost	Lower	Higher
Biocompatibility	Relatively lower	Higher

Recommendations		Level ^b
Microporous membrane oxygenators are recommended as the standard choice in the CPB procedure.	- 1	В
Polymethylpentene membrane oxygenators are not recommended when volatile anaesthetic agents are used during the CPB procedure.	Ш	В

Heat Exchangers

Heated temperature < 40 °C

Temperature gradient between body and circuit < 10 °C

Types of Pump

Roller vs Centrifugal Pumps

	Roller pump	Centrifugal pump
Description	Nearly occlusive Afterload independent	Nonocclusive Afterload sensitive
Advantages	Low prime volume Low cost No potential for backflow Shallow sine-wave pulse	Portable, position insensitive Safe positive and negative pressure Adapts to venous return Superior for right or left heart bypass Preferred for long-term bypass Protects against massive air embolism
Disadvantages	Excessive positive and negative pressure Spallation Tubing rupture Potential for massive air embolism Necessary occlusion adjustments Requires close supervision	Large priming volume Requires flowmeter Potential passive backward flow Higher cost

Centrifugal Pump and Roller Pump in Adult Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials

Richard Saczkowski, Michelle Maklin, Thierry Mesana, Munir Boodhwani, and Marc Ruel

Department of Cardiac Surgery, Royal Columbian Hospital, New Westminster, British Columbia, Canada

- 18 randomized controlled trials with 1868 patients
- Predominantly isolated CABG
- No significant difference for hematological variables, postoperative blood loss, transfusions, neurological outcomes, or mortality

Venous Cannulation

Arterial Cannulation

- Optimal arterial BP during cannulation
 - MAP 70~80mmHg, sBP 100~120mmHg

Aortic Cannulation Problems

Purpose of Venting the Left Heart

- Preventing distension of the ventricle
- Reducing myocardial rewarming
- Preventing cardiac ejection of air
- Facilitating surgical exposure

Determinants of Safe Perfusion

Blood flow rate

Arterial pressure

Hematocrit

Temperature

Acid/Base management

Blood Flow Rate

Accepted flow rate: 2.2~2.5L/min/m² at 35~37°C, Hct 25%

2024 EACTS/EACTAIC/EBCP Guidelines on CPB in Adult Cardiac Surgery

Recommendation Table 41. Recommendations for pump flow management during cardiopulmonary bypass

Recommendations	Classa	Level ^b	Ref ^c
It is recommended that the estimated pump flow rate be determined before the initiation of CPB based on the BSA and the planned level of hypothermia.	ı	С	-
The adequacy of the pump flow rate during CPB should be considered based on oxygenation and metabolic parameters (SVO ₂ , O ₂ ER, r_cSO_2 , VCO ₂ , VCO ₂ /VO ₂ and arterial blood lactate levels). ^d No validated threshold presently exists.	lla	В	[213, 542, 543]
It is recommended that a minimal value of DO_2 of 280 ml/min/m ² be used to reduce the risk of AKI stage 1.	ı	A	[533-536, 545, 546]
Pump flow rates calculated on the basis of lean body mass may be considered as a suggested lower value in patients with obesity.	IIb	В	[528]

Arterial Pressure

- Older patients with vascular disease or hypertension
- → **70~80mmHg**

Pressure Monitoring

Recommendation Table 40. Recommendations for control of mean arterial blood pressure during cardiopulmonary bypass

Recommendations	Class ^a	Level ^b	Ref ^c
It is recommended that the MAP be maintained between 50 and 80 mmHg with vasoconstrictors and vasodilators if required, having ensured that the depth of anaesthesia and pump flow rate are sufficient.	ı	A	[381, 511]
The use of vasopressors to increase the MAP to values above 80 mmHg during CPB is not recommended.	Ш	В	[381, 510, 517]
Targeting the MAP during CPB within the limits of individualized cerebral autoregulation data, measured under normocapnic conditions before CPB, should be considered whenever the technical and human skills are available.		A	[222, 519, 520]
It is recommended that vasoplegic syndrome during CPB be treated with $\alpha 1$ -adrenergic agonists and/or vasopressin.	ı	С	[521, 523]
In refractory vasoplegic syndrome, alternative drugs (methylene blue or terlipressin) should be considered, alone or in combination.	lla	В	[522, 523]
Hydroxocobalamin or angiotensin II may be considered to treat vasoplegic syndrome during CPB.	IIb	С	[524-527]

Hematocrit

• Ideal hematocrit : controversial, but usually 20~25% during CPB

- Low hematocrit
 - Reduce blood viscosity and hemolysis
 - Reduce oxygen-carrying capacity
 - Increase cerebral blood flow
- Viscosity remains stable when percent Hct and blood temperature are equal (ex. Same viscosity: 37°C 37% Hct = 20°C 20% Hct)

Transfusion Management

Recommendation Table 45. Recommendations for transfusion management during cardiopulmonary bypass

Recommendations	Classa	Level ^b	Ref ^c
Packed red blood cell transfusions			
It is recommended that PRBCs be transfused during CPB if the HCT value is <18% (Hb 6.0 g/dL).	I	С	-
For HCT values between 18% and 24%, PRBCs may be considered based on an assessment of the adequacy of tissue oxygenation. ^d	IIb	В	[592]
PRBCs are not recommended to be transfused during CPB if the HCT is $>$ 24% and DO $_2$ and extraction are acceptable.	Ш	С	[108, 587]
Fresh frozen plasma transfusions			
It is recommended that antithrombin concentrate be used as the primary treatment of antithrombin deficiency to improve heparin sensitivity.	ı	В	[596-598]
If antithrombin concentrate is unavailable, FFP should be considered to treat antithrombin deficiency to improve heparin sensitivity.	lla	С	-
FFP should not be used prophylactically during CPB to reduce perioperative blood loss.	Ш	В	[599, 600]

Temperature

Circulatory arrest times of approximately 35 minutes at 18°C

Oxygen Consumption to Perfusion Flow

CPB with Systemic Hypothermia

Lower pump flows

Better myocardial protection

Less blood trauma

Better organ protection

Acid/Base Alteration

Temperature	рН	P _{CO2}
37°C	7.40	40mmHg
>37°C	\downarrow	↑
<37°C	↑	\

- At 40 °C \rightarrow pH of 7.35 and higher P_{CO2}
- At 20 °C \rightarrow pH of 7.65 and lower P_{CO2}

$$CO_2 + H_2O \iff H_2CO_3 \iff H^+ + HCO_3^-$$

 $H_2O \iff H^+ + OH^-$

Acid/Base Management Strategies

Alpha-stat

pH-stat

Alpha-stat Strategy

The pH of pure water at equilibrium at 25°C is 7

Buffering system : Imidazole moiety of histidine

Alpha : 특정 pH에서 histidine 의 이온화된 상태

Alpha-stat Strategy

- The ratio of the unprotonated histidine imidazole groups to H⁺
 - α (alpha)
- Maintenance of constant α

- Keeping total CO₂ content constant
- Allowing pH and PaCO₂ to varying temperatures

pH-stat Strategy

Maintenance of pH at varying temperatures

 Addition of CO₂ at hypothermia to maintain PaCO₂ 40mmHg, pH 7.40

Alpha-stat vs pH-stat

	Alpha-stat	pH-stat
Blood pH	Alkalic	Normal
Intracellular pH	Normal	Acidic
Intracellular enzyme function	Maintained	↓
Technically demanding	No	Yes
Cerebral blood flow (CBF)	↓	Maintained

Cerebral Blood Flow (CBF)

- Hypothermia → Decreased CBF(↓) and cerebral metabolic rate(↓↓)
- Maintained response of cerebral circulation to changes in PaCO₂
- CBF: pH-stat > alpha-stat
- Enhanced CBF
 - · Risk for microemboli, cerebral edema, high intracranial pressure
 - Improving cerebral cooling

Neurologic Complications after CPB

	Adults	Children
Mechanism	Emboli	Hypoperfusion Excitotoxic pathway
Favor strategy	Alpha-stat	pH-stat

Recommendations		Level ^b
Alpha-stat acid-base management should be considered in adult cardiac surgery patients with high-moderate hypothermia due to improved neurological and neurocognitive outcomes.	lla	В

Inflammatory Responses to CPB

Resting neutrophils Neutrophil ac

Aileen H., et al. Nutrients 2018

Baggiolini M. Nature 1998; 392:565.

Activation of inflammatory mediator and alteration of immune function

Coagulopathy Related to CPB

- Hemodilution
- Hypothermia
- Hemolysis
- Heparinization
- Activation of the coagulation system

Endocrine and Electrolytes Responses to CPB

- Antidiuretic hormone (vasopressin)
- Adrenocorticotropin
- T3 and T4 responses to TSH↓
- Adrenal responses
- Hyperglycemia and hypoinsulinemia
- Hypomagnesemia

Organ Damage Related to CPB

- Neurologic injury
 - Stroke
 - Delirium
 - Cognitive decine
- Lung injury
 - Atelectasis
 - ARDS
- Renal injury

Heparin and Protamine

Heparin dose: 300U/kg

Target activated clotting time (ACT): 400~480 sec

Protamine dose: 1mg/100U of heparin

Protamine

- Derived from salmon sperm
- Strongly alkaline
- Polycationic protein
- High affinity for negatively charged sulfated glycosaminoglycans, such as heparin
- Cleared by the reticuloendothelial system (RES)

Some anticoagulant activity

Problems related to Protamine

- Heparin rebound
- Hypotension
- Anaphylactoid reactions
- Pulmonary vasoconstriction
- Direct antiplatelet effect

Protamine Reactions

- Adverse cardiopulmonary response to protamine
- Catastrophic pulmonary vasoconstriction: ~0.6%
- Risk factors
 - Valvular heart disease
 - Preexisting pulmonary hypertension
 - Bolus protamine administration
 - Infusion rates > 50mg/min
 - Diabetes with prior NPH insulin exposure
 - Sterilization through ligation of the vas deferens
 - Fish allergy....

Management of Protamine Reactions

- Infusion rate : <5mg/min
- Prompt termination of protamine infusion at the first sign of any adverse effect
- Supportive care: Oxygen, fluids, Epi/NE
- Reinstitution of bypass
- Inhaled NO

Prophylaxis with histamine blockers → no evidence for routine use

Recommendation Table 37. Recommendations for heparin administration

Recommendations	Classa	Levelb
Individualized heparin and protamine management should be considered to reduce postoperative coagulation abnormalities and bleeding complications in cardiac surgery with CPB.	lla	В
It is recommended that ACT checks be performed at regular intervals based on institutional protocols and that heparin doses be administrated accordingly, especially in the absence of individual heparin dosing services.		С

Recommendation Table 38. Recommendations for protamine administration

Recommendations		Level ^b
A protamine-to-heparin ratio < 1.0 is recommended to avoid overdosing of protamine.	I	В
Individualized heparin-protamine management should be considered to reduce postoperative coagulation abnormalities and bleeding complications after cardiac surgery with CPB.	lla	В
Cardiotomy suction should be discontinued with the start of the administration of protamine.	lla	С

Recommendation Table 39. Recommendations for alternative anticoagulation

Recommendations					
Bivalirudin should be considered as the first-line anticoagulation treatment in patients with acute HIT type 2 who require cardiac surgery.	lla	В			
Anticoagulation with argatroban may be considered in patients with acute HIT type 2 who require cardiac surgery with CPB and have significant renal dysfunction.	IIb	С			

Summary

Determinants of Safe Perfusion

Blood flow rate

Arterial pressure

Hematocrit

Temperature

Acid/Base management

Management of Protamine Reactions

- Infusion rate : <5mg/min
- Prompt termination of protamine infusion at the first sign of any adverse effect
- Supportive care: Oxygen, fluids, Epi/NE
- Reinstitution of bypass
- Inhaled NO
- \bullet Prophylaxis with histamine blockers \rightarrow no evidence for routine use

2025 대한심장혈관흉부외과학회

제57차 추계학술대호 2025. 10. 29 (Wed) - 10. 31 (Fri) 호텔인터불고 대구

		Adult Cardiac	General Thoracic	Intensive	Adult Cardiac Surgery
		Surgery		Care/ECMO/Trauma	
		Focused Session III.	Session No. 25	Focused Session 1.	Session No. 44
		CABG: My LITA to LAD	Perioperative	Management of Rib	Aorta I.
			Chemotherapy and	Fractures	From Bench to
			Immunotherapy in		Bedside: Translating
10:30~12:00	90'		NSCLC		Research into
					Complex Aortic Repair
		Chair: Jun Sung Kim			
		Kyo-Seon Lee	Chair: In Kyu Park	Chair: Hyun Koo Kim	Chair: Suk Won Song
			Yong Won Seong	Sung Youl Hyun	Suryeun Chung
				Panel: Junepill Seok,	
		Abstract		Wooshik Kim	
			Abstract: 25-0~25-5	Abstract	Abstract: 44-0~44-6

References

Thank you!